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The contribution of industrial robots to labor productivity growth and 

economic convergence: A production frontier approach 

 

Abstract 

This paper investigates the contribution of industrial robots to labor productivity growth and 

the process of economic convergence in 19 developed and 17 emerging countries in the period 

1999 to 2019. To answer our research questions, we extend the non-parametric production 

frontier framework by considering industrial robots as a separate production factor. Production 

frontiers and distances to the frontiers are estimated by Data Envelopment Analysis, a method 

based on linear programming models. Considerable contributions of robotization to labor 

productivity growth are mainly found in emerging countries and are rather modest in most 

developed countries. In the period 2009 to 2019 robot capital deepening as a source of 

productivity growth has gained in importance in emerging countries but not in developed 

countries. Within the period 1999 to 2019 we find some evidence of i) unconditional β-

convergence, ii) a reduction in the dispersion of productivity levels across economies (σ-

convergence) and iii) a depolarization (shift from bimodal to unimodal distribution) of the labor 

productivity distribution. Non-robot physical capital deepening and robotization are the most 

important drivers of β-convergence. Robot capital deepening contributed to the depolarization 

of the labor productivity distribution and to σ-convergence. Though, the effect of robot capital 

deepening on the entire shift of the labor productivity distribution between 1999 and 2019 is 

modest and dominated by other growth factors such as technological change and non-robot 

physical capital deepening. 

JEL-Classification: E24, O33, O47 

Keywords: automation, robotization, decomposition, data envelopment analysis, emerging 

countries, developed countries 
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1. Introduction 

Labor productivity growth drives economic growth and plays a central role for the wealth and 

development of nations and the improvement of living standards (Timmer et al., 2010; Mendez 

et al., 2020). Beside the general interest of policy makers, media and the public, the ongoing 

and accelerating diffusion of industrial robots (see, e.g., Dachs et al., 2022) attracted the 

attention of numerous scholars aiming to explore the impact of this current wave of automation 

on various economic outcomes, such as employment, wages, and labor productivity growth. 

The current empirical evidence, based on industry- and firm-level data, suggests a positive 

relationship between robot use and productivity growth (for studies based on industry-level data 

see, e.g., Dauth et al. (2017), Graetz and Michaels (2018), Jungmittag and Pesole (2019), 

Leitner and Stehrer (2019), Kromann et al. (2020), Bekthiar et al. (2021), for firm-level 

evidence see, e.g., EC (2015), Acemoglu et al. (2020), Ballestar et al. (2020), Bonfiglioli et al. 

(2020), Dixon et al. (2020), Koch et al. (2021)). 

Despite the contemporary interest and the booming number of studies exploring the economic 

and social consequences of the ongoing diffusion of robots, relatively little is known about i) 

how the contribution of industrial robot usage to labor productivity growth differs across 

countries, and ii) if the worldwide diffusion of industrial robots contributes to a widening or 

closing of the productivity gap between rich and poorer countries. While previous studies on 

the impact of robotization on labor productivity mainly focused on OECD or developed 

countries, investigations including or focusing on emerging and developing countries are rare 

(exceptions are Jung and Lim, 2020; Zhu and Zhang, 2021; Fu et al., 2021). 

First, we add to this literature by investigating whether and how the contribution of robot 

adoption to labor productivity growth differs between developed and emerging countries. 

Second, to the best of our knowledge we are the first to investigate if, and by how much, robots 

contribute to the convergence of labor productivity levels across countries. Consequently, we 

analyze how industrial robot adoption, and four other growth factors (i.e., technological change, 
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efficiency change, non-robot physical capital accumulation and human capital accumulation) 

shape the entire distribution of labor productivity across a sample of 19 developed and 17 

emerging countries over the period 1999 to 2019. We apply and extend the nonparametric 

production frontier approach developed by Kumar and Russell (2002), and refined by 

Henderson and Russell (2005). Hence, this study also contributes to the vast literature analyzing 

cross-country economic growth and convergence1 and extends the non-parametric production 

frontier framework of Henderson and Russell (2005) by incorporating industrial robots. 

Contrary to many other studies (e.g., Graetz and Michaels, 2018; Cette et al., 2021a, 2021b) we 

apply quality-adjusted measures of industrial robot stocks.2 

While previous studies are mostly based on regression techniques and focus on average effects, 

there are various reasons why we can expect that the impact of robotization on labor 

productivity growth differs across countries. First, Graetz and Michaels (2018) find diminishing 

marginal gains from increased use of robots. Hence, we can expect that the initial level of robot 

usage affects the potential labor productivity gains from increased robot diffusion. Since 

emerging countries are characterized by substantially lower robotization levels than developed 

countries (see, e.g., Soto, 2020) we might expect higher productivity gains from increasing 

robotization in emerging countries. Second, the productivity enhancing effect of robotization 

depends on the industrial structure of an economy and the related type of tasks that can be 

automated, as well as on the productivity of the workforce that is replaced by robots. However, 

a priori it is difficult to hypothesize if the economic structures favor the relative growth potential 

of emerging vis-à-vis developed countries or the other way around. 

The rise of robots in emerging markets in the last 20 years is remarkable. While in developed 

countries (e.g., Germany, Japan, US) the use of industrial robots started to climb exponentially 

                                                           
1 See Johnson and Papageorgiou (2020) for a review of the more recent (last ten to fifteen years) literature on 

cross-country economic convergence dynamics. 
2 Kromann et al. (2020) discuss the importance of adjusting robot stock measures for quality changes. 
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in the 1980s, at the start of the new millennium robots virtually played no role in the economies 

of, e.g., India, Turkey, or China. In 2016, China replaced Japan as the country with the highest 

robot stock, and nowadays more than 29 % of the global robot stock is in China (Müller and 

Kutzbach, 2020). Between 2014 and 2019 the stock of industrial robots grew by 33 %, 32 %, 

19 %, and 17 % in China, Mexico, Turkey, and India, but only by 6 % in the United States, and 

5 % in Western Europe (Müller and Kutzbach, 2020).3 It will be interesting to investigate 

whether and by how much the apparent catching-up of emerging countries in terms of 

robotization translates into convergence of labor productivities. 

Standard neoclassical growth theory predicts that countries with access to identical technologies 

should converge to common levels of labor productivity (Jungmittag, 2021). By incorporating 

robots in standard economic growth models Jungmittag (2021) shows that differences in the 

initial stock of robots and its growth rate might prevent countries to converge to common levels 

of labor productivity, and only conditional convergence towards country-specific steady states 

might be achieved. 

The studies most closely related to ours are Cette et al. (2021a, 2021b) and Jungmittag (2021). 

Cette et al. (2021a, 2021b) apply the standard growth accounting methodology by Solow (1956, 

1957) to isolate the contribution of industrial robots to labor productivity growth in 30 OECD 

countries over the period 1975-2019. This procedure provides country-specific estimates of the 

proximate sources of economic growth. Jungmittag (2021) investigates the convergence of 

robot densities in the manufacturing industries of 24 EU countries over the period 1995 to 2015. 

While Cette et al. (2021a, 2021b) do not analyze convergence processes, the empirical part in 

Jungmittag (2021) suffers from analyzing how the convergence in robot densities translates into 

convergence in labor productivity levels. Both studies focus on OECD countries. 

                                                           
3 A discussion of the rise of robots in China is provided in Cheng et al. (2019), for Central and Eastern European 

countries see Cséfalvay (2020). 
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Contrary to the standard growth accounting procedure applied in Cette et al. (2021a, 2021b), 

we use the (deterministic) non-parametric production frontier approach developed by Kumar 

and Russell (2002), and refined by Henderson and Russell (2005), and extend it by considering 

industrial robots as separate production factor. The estimation of the production frontier is based 

on linear programming techniques known as Data Envelopment Analysis (DEA). The 

advantage of this approach over regression-based studies, which are heavily model-driven, is 

that it is a purely data-driven approach, which does not require assumptions about the functional 

form of the production function (e.g., Cobb-Douglas or CES), the existence of perfectly 

competitive markets and Hicks-neutral technological change (Badunenko and Romero-Ávila, 

2013). Unlike standard growth accounting, this framework allows us to distinguish between 

efficiency change, i.e., movements toward the frontier, and technological change, i.e., shifts of 

the frontier (Badunenko and Romero-Ávila, 2013). The contribution of robots to technological 

change is assessed by comparing two different decompositions of labor productivity change: 

one with and one without considering industrial robots as separate production factor (Ceccobelli 

et al., 2012). 

The remainder of this article is organized as follows: Section 2 describes the data and the 

construction of the quality-adjusted robot capital stock and provides some descriptive statistics 

on the development of robot intensities (i.e., the robot-labor ratio) of selected countries over the 

1999-2019 period. Section 3 constructs the technology frontiers in 1999 and 2019 and provides 

the efficiency scores, i.e., the distance from the frontier, for each of the 36 countries analyzed. 

Section 4 presents the results of the decomposition of productivity growth into its five 

components. Section 5 assesses the relative importance of the five growth factors in shifting the 

entire productivity distribution. Section 6 provides some sensitivity analyses. Section 7 

summarizes our results and concludes. 
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2. Data 

We use two different data sources to construct the dataset for our analysis: First, input data for 

labor, human capital and non-robot physical capital, as well as output data is derived from the 

Penn World Table (PWT) version 10.0 (Feenstra et al., 2015). Second, we use data from the 

International Federation of Robotics (Müller and Kutzbach, 2020) to estimate industrial robot 

capital stocks. 

 

2.1. Sample selection 

The PWT 10.0 covers 183 countries between 1950 and 2019. Hence, the selection of our sample 

of a balanced panel of 36 developed and emerging countries for the period 1995-2019 with a 

total of 900 observations is mainly driven by the availability of data on industrial robot 

installations.4 Müller and Kutzbach (2020) provide data on annual robot installations and robot 

stocks for 1993-2019 for Australia, Austria, Belgium, Czech Republic, Denmark, Finland, 

France, Germany, Hungary, Italy, Japan, Netherlands, Norway, Poland, Portugal, Republic of 

Korea, Russian Federation, Singapore, Slovakia, Slovenia, Spain, Sweden, Switzerland, 

Taiwan, United Kingdom and the United States. Japan, whose robot data are compromised by 

a severe break in 2001 due to a change in underlying robot definitions, could be included in the 

sample after a correction (see Section A of the supplementary material for more details). Up to 

2011 the data for the United States also includes robot installations/stocks for Canada and 

Mexico. Based on information provided in the annual reports of the International Federation of 

Robotics (IFR, 2005-2020) and some simple assumptions we can separate the installations for 

North America before 2011, and include Canada, Mexico as well as the Unites States in our 

sample. In addition to these 28 countries, data on robot installations for Argentina, Brazil, 

China, Greece, India, Israel, Malaysia, South Africa, and Turkey becomes available from 1999 

                                                           
4 Though, we have data for the period 1995 to 2019, the period of investigation throughout section 3 to 7 is 1999-

2019. The reasons for this are methodological considerations which are explained in Section 3.1. 
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onwards. Section A of the supplementary material describes how we estimate robot installations 

prior to 1999 for those countries. 

Finally, our data set excludes South Africa and is restricted to the period 1995-2019 because 

data on average annual hours worked by persons engaged in the PWT 10.0 is incomplete for 

South Africa (missing for 1993-2000 and 2015), as well as for Poland and Slovenia (missing 

for 1993 and 1994). Our sample of countries covers 86 % of global GDP and 93% of the world-

wide robot stock in 2019. 

 

2.2. Categorization of countries 

Since one goal of this article is to investigate how the contribution of industrial robots to labor 

productivity growth differs between developed and emerging countries it seems natural to 

divide the countries in our sample into two groups. Our definition of country groups is based 

on real GDP per capita (in 2017 US$) in the starting year of our investigation period. Real GDP 

per capita is derived from the PWT 10.0 and calculated as CGDPE divided by POP. CGDPE is 

expenditure-side real GDP at current PPPs (in millions 2017 US$), and POP is a country’s 

population (in millions). Countries having a real GDP per capita larger than 32,500 US$ in 1999 

are classified as developed countries, and countries having a real GDP per capita lower than 

27,500 US$ in 1999 are classified as emerging countries. Hence, 19 out of the 36 countries in 

our sample are developed countries, and 17 are emerging countries. The 19 developed countries 

include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Israel, Italy, 

Japan, Netherlands, Norway, Singapore, Sweden, Switzerland, Taiwan, United Kingdom, 

United States. The 17 emerging countries are Argentina, Brazil, China, Czech Republic, 

Greece, Hungary, India, Malaysia, Mexico, Poland, Portugal, Republic of Korea, Russian 

Federation, Slovakia, Slovenia, Spain, and Turkey. The categorization of countries is 

comparable to that developed in Niebel (2018) and Walheer (2021). The latter uses the terms 

advanced and follower countries instead of developed and emerging countries. 
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2.3. Non-robot capital, labor input and output variables 

The data for the non-robot physical capital, human capital, and output is derived from the Penn 

World Table (PWT) version 10.0 (Feenstra et al., 2015). The labor input, measured in annual 

million hours worked, is obtained as EMP×AVH, where EMP is the number of persons engaged 

(in millions) and AVH is the average annual hours worked by persons engaged. Human capital 

is measured by the human capital index HC. Its calculation follows a common approach in the 

literature and is based on data on years of schooling and returns to education.5 The non-robot 

capital stocks are computed as RNNA×RGDPO/RGDPNA minus our estimate of the monetary 

robot capital stock described in section 2.4. Whereas RNNA is the total capital stock at constant 

2017 national prices, RGDPO is output-side real GDP at chained PPPs and RGDPNA is real GDP 

at constant 2017 national prices, all three measured in million 2017 US$. Output is measured 

as RGDPO. 

 

2.4. Robot capital stock variables 

The International Federation of Robotics (IFR) collects data on annual robot installations by 

country, industry, and application from nearly all major industrial robot suppliers worldwide 

and from national robot associations (Müller and Kutzbach, 2020; p.21). The IFR uses the 

definition of a ‘manipulating industrial robot’ given by the ISO 8373:2012 standard from the 

International Organization for Standardization. Accordingly, an industrial robot is defined as 

‘an automatically controlled, reprogrammable, multipurpose manipulator programmable in 

three or more axes, which can be either fixed in place or mobile for use in industrial automation 

applications’ (Müller and Kutzbach, 2020, p. 23). 

We construct the stock of industrial robots in physical units based on annual installations i) 

using the perpetual inventory method (PIM), assuming annual depreciation rates of 5 %, 10 % 

                                                           
5 Details on the calculation of the human capital index are provided in „Human capital in PWT 9.0“: 

https://www.rug.nl/ggdc/docs/human_capital_in_pwt_90.pdf 
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and 15%, as well as ii) using a ‘one-hoss shay’ depreciation method assuming that the average 

operating service life of an industrial robot is 12 years. These procedures require that the time 

series of robot installation start sufficiently prior to the robot stock series. Section A of the 

supplementary material describes the data preparation steps and the construction of the robot 

installation series and the robot stock series in detail. Section B.2. of the supplementary material 

provides figures on the evolution of our estimated robot stock series over the period 1995 to 

2019 for each of the 36 countries in our sample. These figures also reveal how the initial robot 

stock varies according to the four different methods applied. Since country-specific price data 

on robots is not available, we derive monetary robot capital stocks by multiplying the robot 

stock in physical units by the average price of robots in the United States in 2017. 

Kromann et al. (2020) and Graetz and Michaels (2018) report that the quality of robots 

increased markedly between 1990-2005. To account for quality changes in the robot stocks we 

follow Hulten (1992) and consider annual robot installations in efficiency units by multiplying 

the robot installations in physical units by an index of technical efficiency (robot quality index). 

The robot quality index is based on two price indices developed by the IFR (IFR, 2006; Chapter 

III and Annex C) for the period 1990-2005, one is quality adjusted and one is not. The robot 

quality index is derived by dividing the quality adjusted robot price index by the non-quality 

adjusted robot price index. For the years 2006-2019 we use forecasted values of the robot 

quality index based on a linear trend model. The index and its forecast are shown in section 

B.1. in the supplementary material. 

Throughout section 2.5. to 5 we present our results based on the quality-adjusted robot capital 

stock derived with the PIM assuming a depreciation rate of 15 %. The sensitivity of our results 

regarding different assumptions on robot capital depreciation and changes in robot quality is 

discussed in section 6. 

 

2.5. Descriptive Statistics 
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Table 1 provides rankings of countries by robot intensities, as measured by the number of robots 

per one hundred million hours worked, for the years 1999 and 2019, as well as a country ranking 

by growth rates of robot intensities over the period 1999-2019. Developed countries are marked 

with an asterisk, emerging countries are not. To save space we only report the top ten and 

bottom ten countries for each ranking. The full ranking and detailed descriptive statistics of 

other variables used in our analysis are available in the supplementary material in section B.3. 

and B.4., respectively. 

Table 1 

Country ranking by (growth of) robot intensity 

  Ranking by robot 

intensity in 1999 
 Ranking by robot 

intensity in 2019 
 Ranking by growth of robot 

intensity between 1999-2019 
   

Rank   Country 

Robot 

Intensity  Country 

Robot 

Intensity 

 

Country 

Growth rate of 

robot intensity  

1  Japan* 136.99  Rep. of Korea 324.04  China 49,522% 

2  Germany* 74.91  Japan* 199.36  India 7,527% 

3  Singapore* 56.81  Germany* 187.09  Hungary 5,872% 

4  Belgium* 45.13  Taiwan* 168.62  Poland 3,519% 

5  Italy* 44.92  Singapore* 148.64  Turkey 2,442% 

6  Sweden* 42.09  Slovenia 139.36  Czech Rep. 2,137% 

7  Rep. of Korea 34.12  Czech Rep. 112.40  Slovenia 1,626% 

8  Finland* 33.64  Slovakia 101.57  Slovakia 1,496% 

9  Switzerland* 26.46  Italy* 98.32  Mexico 1,265% 

10  France* 24.16  Sweden* 93.15  Argentina 1,171% 

…
. 

 …
. 

…
. 

 …
. 

…
. 

 …
. 

…
. 

27  Israel* 1.67  Mexico 19.52  France* 141% 

28  Mexico 1.43  Norway* 18.77  Norway* 129% 

29  Brazil 1.19  Turkey 16.37  Sweden* 121% 

30  Hungary 1.03  Israel* 14.64  Italy* 119% 

31  Poland 0.78  Australia* 14.17  Finland* 86% 

32  Turkey 0.64  Argentina 8.16  Australia* 63% 

33  Argentina 0.64  Brazil 7.84  UK* 57% 

34  Greece 0.42  Greece 4.13  Belgium* 49% 

35  China 0.06  Russian Fed. 2.69  Japan* 46% 

36  India 0.02  India 1.47  Russian Fed 4% 
Robot intensity is measured as number of robots per one hundred million hours worked. Number of robots are 

estimated with the perpetual inventory method assuming a depreciation rate of 15 %. Developed countries and 

emerging countries are shown with and without asterisk, respectively.  

 

Table 1 shows that in 1999 Japan was the country with by far the highest robot intensity, 

followed by other developed countries such as Germany, Singapore, Belgium and Italy. The 
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countries with the lowest robot intensities in 1999 are almost exclusively emerging countries, 

with India having the lowest robot intensity, followed by China, Greece, Argentina and Turkey. 

We find that robot intensities increased in all countries, though the growth rates of robot 

intensities are highly heterogeneous. 

The catching-up of the countries with the lowest robot intensities in terms of robot diffusion is 

remarkable: Seven out of the ten countries with the lowest robot intensities in 1999 rank among 

the top ten countries regarding robot intensity growth over the 1999 to 2019 period. The speed 

of robot diffusion was by far the fastest in China, followed by India, Turkey, and the Eastern 

European countries Hungary, Poland, Czech Republic, Slovenia, and Slovakia. This fast 

diffusion of robots in these countries enabled China, Poland, and Hungary to climb from rank 

35, 31 and 30 to rank 23, 24, and 17, respectively. While in 1999 Slovakia, Slovenia, and the 

Czech Republic were ranked # 22, # 20, and # 24, respectively, in 2019 they are among the top 

ten countries with the highest robot intensities. Thus, it will be interesting to explore if, and by 

how much, the apparent catching-up of emerging countries in terms of robot intensities has 

contributed to the convergence of labor productivity across the 36 countries in our sample. Last 

but not least, it is worth mentioning that Taiwan and Republic of Korea have achieved about a 

ten-fold increase in robot intensities, whereas Republic of Korea displaced Japan as the country 

with the highest robot intensity, and Taiwan ascended from # 15 to # 4. 

 

3. Technology Frontiers and Efficiency Measurement (Technological Catch-up) 

3.1. Data Envelopment Analysis 

Following Kumar and Russell (2002) and Henderson and Russell (2005) we construct the 

production frontier and associated efficiency levels of individual economies (distances from the 

frontier) using the nonparametric Data Envelopment Analysis (DEA) approach. The basic idea 

is to envelop the data in the smallest convex cone, and the upper boundary of this set then 

represents the “best practice” production frontier. One of the major benefits of this approach is 
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that it does not require a prior specification of the functional form of the technology.6 It is a 

data-driven approach implemented with standard mathematical programming algorithms, 

which allows the data to tell the form of the production function. 

Our technology contains five macroeconomic variables: aggregate output and four aggregate 

inputs, which are labor, human capital, (non-robot) physical capital, and robot capital. Let 

, , , ,it it it it itY L H K R  , t=1,2,…,T, i=1,2,…,N represent T observations on these five variables  

for each of the N countries. The robot capital stock is subtracted from the total physical capital 

stock and considered as autonomous production factor, either in physical or monetary units.7 

This is motivated by the fact that industrial robots can perform a wide range of tasks with very 

little human intervention and almost independently of conventional machines8 (cf. the 

definition of robots by the IFR in section 2), which allows them to replace human workers and 

normal machines almost completely. Furthermore, numerous authors incorporate robot capital 

as separate production factor into their analytical framework (for economic growth models see, 

e.g., Steigum, 2011; Prettner 2019; Lankisch et al., 2019; Krenz et al., 2021; Gasteiger and 

Prettner, 2022; for the analysis of elasticities of substitution with robots as a third production 

factor see DeCanio, 2016). 

Following most of the macroeconomics literature, we assume that human capital enters the 

technology as a multiplicative augmentation of physical labor, so that our NT observations are 

ˆ, , ,it it it itY L K R  , t=1,2,…,T, i=1,2,…N, where ˆ
it it itL L H==  is the amount of labor input 

measured in efficiency units in country i at time t. Utilizing the “sequential production set” 

                                                           
6 Though, the approach requires an assumption about returns to scale of the technology, as well as the assumption 

of free input and output disposability. For a detailed description of the approach and its assumption see, e.g., Ray 

(2004). 
7 Due to data unavailability, we derive the monetary robot capital stock for all countries by multiplying the robot 

stock in physical units by one price: the average price of robots in the United States in 2017. Since we apply 

radial DEA-models which are translation invariant, i.e., insensitive to a multiplication of a variable by a constant 

factor, the results are the same if the robot capital stock is measured in monetary or physical units. 
8 These capabilities set robots apart from earlier waves of automation (ordinary tools and normal machines) and 

more conventional ICT technologies, which left flexible movements in three dimensions firmly in human hands 

(Graetz and Michaels, 2018). Nevertheless, robot programming and maintenance still requires human labour. 
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formulation of Diewert (1980) to preclude implosion of the frontier over time, we construct the 

convex, free-disposal, constant-returns-to-scale technology in period t, using all the data up to 

that point in time, as 

 

4ˆ ˆ ˆ, , , | , ,

, ,

0 ,

it it it it i i i i

t i t i

t i i i i

t i t i

i

Y L K R Y z Y L z L

K z K R z R

z i

   
 

   
 

 

+

 

 

    
 
 

 =   
 
  
 

 

  , (1) 

 

where iz  are the intensity variables. Like Los and Timmer (2005) we limit the decomposition 

analysis to the time span that starts four years after the first observations of robot stock data are 

available to us. Hence, the first year of the analysis is 1999, for which we estimate the frontier 

based on the observations for the period 1995-1999. This makes it less likely that frontier 

techniques observed for the first year of the analysis are dominated by unobserved combinations 

in the past, and avoids that part of what would be interpreted as frontier movements is confused 

with ‘assimilation of knowledge’, i.e., efficiency change (Los and Timmer, 2005). 

The Farrell (1957) output-based efficiency index for country i at time t is defined by 

 

 ˆ ˆ( , , , ) min | / , , ,it it it it it it it it it te Y L K R Y L K R =    (2) 

 

This index is the inverse of the maximal proportional amount that output itY  can be expanded 

while remaining technologically feasible, given the technology and input quantities. It is less 

than or equal to unity and takes the value of unity if and only if the it observation is on the 

period-t production frontier. In our special case of a scalar output, the output-based efficiency 

index equals the ratio of actual to potential output, evaluated at the actual input quantities. 
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3.2. Efficiency and Technological Catch-up 

Table 2 shows the efficiency scores of each of the 36 countries for 1999 and 2019. The scores 

are presented for two cases: where the physical robot stock is treated as a separate production 

factor and where it is not. As expected9, the introduction of robots as separate production factor 

slightly increases the mean efficiency score from 0.763 to 0.781 in 1999, and from 0.686 to 

0.695 in 2019. Considering the country-specific efficiency scores we find that the efficiency 

index in 1999 and 2019 increases for 11 and 9 countries, respectively. For the rest of the 

countries the efficiency indexes remain unaltered. Table 2 shows that incorporating robots 

makes Greece move to the 1999 frontier10, and irrespective of the inclusion of robots Norway, 

Poland and the United States are on the 1999 frontier. With or without robots, the United States 

and Poland remain on the frontier in 2019, whereas Norway is no longer on the 2019 frontier. 

 

 

Fig. 1 Distributions of efficiency index (with robots). The solid curve is the estimated 1999 distribution, and the 

solid vertical line represents the 1999 mean value. The dashed curve is the estimated 2019 distribution, and the 

dashed vertical line represents the 2019 mean value. 

 

                                                           
9 Incorporating additional input and output variables in a DEA-model leads to efficiency scores which are at least 

as high as in a DEA-model without these additional inputs and outputs. 
10 This is because Greece has the lowest endowments of robots in 1999 in our sample. Thereby, the DEA-model 

chooses the input weight for the robot stock input to be extraordinarily high relative to the other inputs. Hence, 

the change in the efficiency score (= the optimal ratio of weighted outputs to weighted inputs), when 

incorporating robots as additional production factor is relatively large. In other words, the low number of robots 

used in the production process relative to the output produced, i.e., the efficient use of the meagre robot 

endowment, makes Greece to be efficient. 
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Table 2 

Efficiency Indexes 

 Without Robots  With Robots 

Country 1999 2019  1999 2019 

Argentina 0.93 0.80  0.94 0.84 

Australia 0.82 0.78  0.84 0.81 

Austria 0.77 0.64  0.77 0.64 

Belgium 0.95 0.61  0.95 0.61 

Brazil 0.69 0.58  0.69 0.61 

Canada 0.86 0.74  0.89 0.74 

China 0.94 0.65  0.94 0.65 

Czech Republic 0.41 0.57  0.42 0.57 

Denmark 0.80 0.74  0.80 0.74 

Finland 0.82 0.70  0.82 0.70 

France 0.97 0.65  0.97 0.65 

Germany 0.80 0.75  0.80 0.75 

Greece 0.58 0.41  1.00 0.46 

Hungary 0.61 0.63  0.62 0.63 

India 0.71 0.67  0.76 0.67 

Israel 0.85 0.81  0.90 0.84 

Italy 0.95 0.52  0.95 0.52 

Japan 0.68 0.64  0.68 0.64 

Malaysia 0.59 0.65  0.59 0.65 

Mexico 0.73 0.61  0.73 0.62 

Netherlands 0.91 0.76  0.91 0.76 

Norway 1.00 0.85  1.00 0.85 

Poland 1.00 1.00  1.00 1.00 

Portugal 0.63 0.44  0.63 0.44 

Rep. of Korea 0.66 0.63  0.66 0.63 

Russian Federation 0.34 0.62  0.34 0.70 

Singapore 0.68 0.73  0.68 0.73 

Slovakia 0.46 0.61  0.48 0.61 

Slovenia 0.49 0.51  0.50 0.51 

Spain 0.82 0.62  0.82 0.62 

Sweden 0.82 0.72  0.82 0.72 

Switzerland 0.78 0.77  0.78 0.77 

Taiwan 0.80 0.84  0.80 0.84 

Turkey 0.89 0.78  0.90 0.79 

United Kingdom 0.72 0.68  0.72 0.70 

United States 1.00 1.00  1.00 1.00 

All countries (mean) 0.76 0.69  0.78 0.69 
The DEA-models with robots are based on quality-adjusted physical robot stocks, which are estimated with the 

perpetual inventory method assuming a depreciation rate of 15 %. 
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Figure 1 plots the distributions of the efficiency index in 1999 and 2019. We find a substantial 

shift of probability mass away from efficiency scores above 0.8 toward lower parts of the 

distribution. The mean efficiency score declined from 0.78 to 0.69. We observe a decline in 

efficiency levels for 26 out of the 36 countries in our sample. This indicates that in the period 

1999 to 2019 for most of the countries the distance to the frontier increased and that they were 

falling behind the best-performers against which they are benchmarked (in most cases 

inefficient countries are compared with Norway, Poland and the United States). The drop in 

efficiency levels is severe for the Southern European countries Greece, Italy, Spain, and 

Portugal, plus France. Only eight countries were able to catch-up to the technology leaders: five 

out of these eight are transition countries in Eastern Europe including Czech Republic, 

Hungary, Russian Federation, Slovakia, and Slovenia. The other three countries are the 

Southeast Asian countries Malaysia, Singapore, and Taiwan. 

However, we also observe that efficiency levels are less dispersed in 2019 compared to 1999. 

It will thus be interesting to analyze whether convergence in efficiency levels drives the 

depolarization of the labor productivity distribution, i.e., a shift from a bimodal to a unimodal 

distribution. 

 

4. Quinquepartite Decomposition of Labor Productivity Change 

4.1. Conceptual Decomposition 

We decompose labor productivity growth between base (b) and current (c) period into 

components attributable to (1) efficiency change (technological catch-up), (2) technological 

change (shifts in the frontier), (3) human capital accumulation, (4) physical (non-robot) capital 

deepening (increase in the capital-labor ratio), and (5) robot capital deepening (increase in the 

robot-labor ratio). Constant returns to scale and labor augmentation of human capital allow us 

to construct the production frontiers in the ˆˆ ˆy k r− −  space, where ˆˆ /y Y L= , 
ˆ ˆ/k K L= , and 
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ˆˆ /r R L=  are the ratios of output, capital and robots, respectively, to effective labor. Since by 

definition the efficiency index is the ratio of actual to potential output evaluated at the actual 

input quantities, the potential output per efficiency unit of labor in the two periods is given by 

ˆ ˆ ˆ( , ) /b b b b by k r y e= , and ˆ ˆ ˆ( , ) /c c c c cy k r y e= , where be  and ce 11 are values of the efficiency 

indexes in the respective periods as calculated in Eq. (2). Accordingly, 

 

ˆˆ ˆ( , )

ˆˆ ˆ( , )

c c c c c

b b b b b

y e y k r

y e y k r
=   (3) 

 

To isolate the effect of each component, we define two sets of new variables under the 

counterfactual assumption that human capital has not changed. The first set includes the ratio 

of (non-robot) physical capital to labor measured in efficiency units, and the ratio of robot 

capital to labor measured in efficiency units under the counterfactual assumption that human 

capital has not changed from its base period: /c c c bk K L H=  and /c c c br R L H= . The second set 

is given by the ratio of (non-robot) physical capital to labor measured in efficiency units, and 

the ratio of robot capital to labor measured in efficiency units under the counterfactual 

assumption that human capital is equal to its current year period: /b b b ck K L H=  and 

/b b b cr R L H= . Then, ˆ ˆ( , )b c cy k r , ˆ( , )b c by k r , ( , )b c cy k r  are the potential outputs per efficiency unit 

of labor at ˆ ˆ( , )c ck r , ˆ( , )c bk r  and ( , )c ck r  using the base-period technology, and ˆ ˆ( , )c b by k r , 

ˆ( , )c b cy k r , ( , )c b by k r  are the potential outputs per efficiency units of labor at ˆ ˆ( , )b bk r , ˆ( , )b ck r , 

( , )b bk r  using the current-period technology. By multiplying the numerator and denominator of 

                                                           
11 For ease of readability, we skip the subscript i (referring to the country under evaluation) in this section. 
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Eq. (3) alternatively by ˆ ˆ ˆ( , ) ( , ) ( , )b c c b c b b c cy k r y k r y k r  and ˆ ˆ ˆ( , ) ( , ) ( , )c b b c b c c b by k r y k r y k r , we 

obtain two alternative decompositions of the growth of ŷ : 

 

ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ˆˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , )

c c c c c b c c b c b b c c

b b b c c b c bb c c b b b

y e y k r y k r y k r y k r

y e y k r y k ry k r y k r
=      (4) 

and 

ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ˆˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , )

c c c b b c b b c c c c b c

b b c b c c b bb b b c b b

y e y k r y k r y k r y k r

y e y k r y k ry k r y k r
=      (5) 

 

The growth of labor productivity, /t t ty Y L= , can be decomposed into the growth of human 

capital and the growth of output per efficiency unit of labor, as follows: 

 

ˆ

ˆ
c c c

b b b

y H y

y H y
=   (6) 

 

Combing Eq. (4) and Eq. (5) with Eq. (6), we obtain 

ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , )

c c c c c b c c c b c b b c c

b b bb c c b c bb c c b b b

c b b b

y e y k r y k r H y k r y k r

y e Hy k r y k ry k r y k r

EFF TECH HACC KACC RKACC

 
=      

  

    

 (7) 

and 

ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ˆ ˆ( , ) ( , )ˆ ˆ( , ) ( , )

c c c b b c b b c c c c c b c

b b b c b c c b bb b b c b b

b c c c

y e y k r y k r H y k r y k r

y e H y k r y k ry k r y k r

EFF TECH HACC KACC RKACC

 
=      

  

    

 (8) 

 

Equation (7) and (8) decompose growth of labor productivity between period b and c into 

changes in efficiency (EFF), technology (TECH), human capital accumulation (HACC), the 
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capital-labor ratio (KACC), and the robot-labor ratio (RKACC). For each component, only the 

variable of interest is different between the denominator and the numerator of each component. 

For instance, for RKACCb only the robot-labor ratio changed (from ˆ /b b b br R L H= to 

/c c c br R L H= ) while all the other variables are held constant. Hence, RKACC indicates the 

contribution of the robot-labor ratio change to labor productivity growth. The same reasoning 

applies for the other components. 

While the decomposition in Eq. (7) measures technological change by the shift in the frontier 

in the output direction at the current-period capital/efficiency-labor ratio, and the current-period 

robot/efficiency-labor ratio, the decomposition in Eq. (8) measures technological change by the 

shift in the frontier in the output direction at the base-period capital/efficiency-labor ratio, and 

the base-period robot/efficiency-labor ratio. Similarly, Eq. (7) measures the effect of (non-

robot) physical and robot capital deepening, as well as human capital accumulation along the 

base-period frontier, whereas Eq. (8) measures the effect of (non-robot) physical and robot 

deepening, as well as human capital accumulation along the current-period frontier. 

These two decompositions do not yield the same results, i.e., the decomposition is path 

dependent. In fact, the two decompositions are only equal if technological change is Hick-

neutral (as assumed by Solow (1957) and the conventional methods of growth accounting). 

Though, one advantage of the growth accounting approach used in this study is that it allows 

for non-neutral technological change. To overcome the path dependence of the decomposition 

we follow Kumar and Russel (2002), Henderson and Russell (2005) and others, and adopt the 

“Fisher Ideal” decomposition introduced by Caves et al. (1982) and Färe et al. (1994). This is 

based on the geometric averages of the two measures of the effects of technological change, 

human capital accumulation, (non-robot) physical capital deepening, and robot capital 

deepening, and obtained mechanically by multiplying the numerator and denominator of Eq. 

(3) by 
1/2 1/2ˆ ˆˆ ˆ ˆ ˆ( ( , ) ( , ) ( , )) ( ( , ) ( , ) ( , ))b c c b c b b c c c b b c b c c b by k r y k r y k r y k r y k r y k r : 
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1/2 1/2

1/2 1/2

( ) ( )

( ) ( )

.

b c b cc

b

b c b c

y
EFF TECH TECH HACC HACC

y

KACC KACC RKACC RKACC

EFF TECH HACC KACC RKACC

=    

   

    

 (9) 

 

4.2. Empirical Results 

Table 3 shows the country-specific components of the decomposition of the growth rate of 

output per hour worked (labor productivity) for the period 1999 to 2019, both with and without 

considering robot capital as a separate production factor. The change in labor productivity is 

reported in the second column of Table 3, whereas the contributions in percentage terms of 

changes in each of the five components appear in column 3-7.12 Likewise, the first row for each 

country reports the results from the quinquepartite decomposition considering robots as 

separate production factor, whereas the second row ignores the autonomous role of robots in 

the production process. 

The mean contribution of efficiency change is negative (-7.1%). Physical capital deepening 

(27.7%) and technological change (22.7%) are by far the most important drivers of labor 

productivity growth, irrespective of the incorporation of robot capital or not. The mean 

contribution of robot capital deepening (10.9%)13 is almost two times that of human capital 

accumulation (6.0%). 

Comparing the mean contributions of the components of labor productivity change with and 

without separating robot capital from other physical capital reveals that a substantial part of 

physical capital accumulation, and to a lesser extend a part of technological progress, can be 

                                                           
12 These contributions in percentage terms can be easily transformed into indexes using the formula 

(PERCENTAGE/100 + 1) so that Eq. (9) holds. 
13 The magnitude of the average percentage contribution rate of robot capital deepening to labour productivity 

growth (10.9/63.8=17%) is comparable to that found by Graetz and Michaels (2018) for a sample of 17 OECD 

countries for the period 1993 to 2007: They ‘find that the contribution of the increased use of robots to 

productivity growth … accounts for 15% of the aggregate economy-wide productivity growth.’ 
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attributed to robot capital accumulation. On average, the contribution of physical accumulation 

and technological progress to the 63.8 % labor productivity change falls from 37.8% to 27.7%, 

and from 27.6% to 22.7%, respectively. The reduced rate of technological progress might 

indicate that robot capital accumulation goes hand in hand with more general technological 

innovations that have the potential to push the production possibility frontier outward. The 

mean contributions of efficiency change and human capital accumulation are almost 

unchanged. 

Table 4 presents mean changes in labor productivity and the five components of productivity 

change for eight groups of countries. We find that emerging countries experienced productivity 

gains more than two times that of developed countries primarily because of faster rates of (non-

robot) physical capital accumulation and robot capital accumulation. Lower efficiency losses 

in emerging countries also contributed to this development. Somewhat counteracting this 

development, we find that technological progress in developed countries is substantially higher 

than in emerging countries. It is important to note, that while the mean growth rate of output 

per hour worked in emerging economies (90.5%) is twice that of developed countries (39.8%), 

the mean percentage change of the robot capital deepening index in emerging countries (20.3%) 

is ten times that of developed countries (2.6%). Therefore, emerging countries appear, on 

average to have benefited more from industrial robot expansion. A two-sample t test for 

differences in means indicates that the mean contribution of robot capital deepening in 

emerging countries is statistically and significantly higher than in developed countries at the 

one percent significance level. It is also interesting to note that for Greece and Israel, robot 

capital accumulation emerges as the main growth engine, whereas for China, Hungary, India, 

Slovakia, Slovenia, and Turkey robot capital deepening appears to be the second major 

contributor to productivity growth. In addition, robot capital accumulation is the third largest 

driver of labor productivity growth in Argentina, Czech Republic, Poland, Portugal, Russian 

Federation, and the United States. 
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Table 3 

 

Percentage Change of Quinquepartite Decomposition Indexes, 1999-2019 
Percentage change of Quinquepartite Decomposition Indexes, 1999-2019 

Country 
Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 
Argentina 40.5 -10.7 6.4 2.9 33.5 7.6  

40.5 -14.9 19.1 1.5 36.6  
Australia 35.8 -4.2 11.7 0.4 23.0 2.7  

35.8 -4.5 16.8 0.4 21.3  
Austria 50.2 -17.3 47.0 5.1 16.4 1.0  

50.2 -17.3 48.8 5.5 15.6  
Belgium 29.7 -35.7 77.1 3.8 9.7 0.0  

29.7 -35.7 77.1 3.8 9.7  
Brazil 40.7 -12.2 8.1 10.7 25.5 6.7  

40.7 -16.3 20.1 7.0 30.8  
Canada 24.1 -17.5 10.1 3.6 23.1 7.2  

24.1 -14.6 13.5 3.8 23.2  
China 252.2 -30.5 4.0 3.1 234.9 41.1  

252.2 -30.5 4.2 3.0 372.6  
Czech Republic 69.7 35.8 9.4 1.8 3.7 8.2  

69.7 39.1 14.6 1.2 5.2  
Denmark 60.5 -7.1 34.6 5.6 19.8 1.4  

60.5 -7.1 37.1 6.1 18.8  
Finland 27.0 -15.1 22.0 7.3 12.8 1.4  

27.0 -15.1 23.7 7.8 12.3  
France 34.8 -33.7 67.4 6.7 13.4 0.4  

34.8 -33.7 68.0 7.2 12.9  
Germany 33.8 -5.7 26.3 2.1 9.7 0.4  

33.8 -5.7 27.0 2.2 9.4  
Greece 15.3 -53.6 12.6 13.5 3.8 87.5  

15.3 -28.9 34.7 9.6 9.8  
Hungary 76.2 2.3 5.5 4.4 26.0 24.1  

76.2 4.1 13.5 5.2 41.7  
India 235.4 -12.5 2.6 6.6 99.8 75.4  

235.4 -6.4 4.0 3.5 233.0  
Israel 9.9 -6.0 5.4 4.8 -2.5 8.4  

9.9 -4.6 14.1 3.9 -2.8  
Italy 18.0 -45.3 76.9 8.5 12.3 0.1  

18.0 -45.3 76.9 8.7 12.2  
Japan 10.9 -5.6 13.9 2.4 0.6 0.0  

10.9 -5.6 13.9 2.4 0.6  
Malaysia 85.3 11.3 10.8 4.3 36.6 5.5  

85.3 9.9 19.1 1.8 39.1  
Mexico 21.9 -15.6 8.7 3.5 18.2 8.6  

21.9 -16.5 18.8 3.3 19.1  
Netherlands 34.4 -17.2 36.1 4.7 10.3 3.3  

34.4 -17.2 38.9 5.3 10.9  
Norway 66.0 -14.6 38.0 5.6 17.4 13.6  

66.0 -14.6 43.2 6.3 27.6  
Poland 104.1 0.0 10.3 2.3 69.6 6.7  

104.1 0.0 14.0 1.6 76.1  
Portugal 38.6 -30.3 44.1 9.9 8.6 15.6  

38.6 -30.3 56.4 8.3 17.4  
Rep. of Korea 91.3 -3.7 12.7 6.8 61.9 1.9  

91.3 -3.7 14.4 7.2 62.0  
Russian Fed. 193.5 102.2 2.0 2.7 34.1 3.3 
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Table 3 continued 

Percentage change of Quinquepartite Decomposition Indexes, 1999-2019 

Country 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100  
193.5 80.9 16.9 2.4 35.4  

Singapore 124.5 6.3 11.5 27.3 47.1 1.2  
124.5 6.3 11.9 28.1 47.4  

Slovakia 58.0 27.2 8.2 3.6 2.7 7.9  
58.0 32.7 11.4 4.3 2.5  

Slovenia 46.3 2.9 19.6 5.8 4.5 7.5  
46.3 3.8 23.9 6.3 7.1  

Spain 44.1 -24.3 46.3 8.0 19.5 0.9  
44.1 -24.3 47.8 8.6 18.7  

Sweden 38.6 -12.4 46.5 4.6 2.7 0.5  
38.6 -12.4 47.0 4.9 2.7  

Switzerland 66.1 -1.7 40.4 3.0 15.7 1.0  
66.1 -1.7 42.4 3.2 15.0  

Taiwan 27.3 4.9 9.9 6.9 0.7 2.6  
27.3 4.9 12.5 7.2 0.7  

Turkey 126.3 -12.7 10.4 16.6 47.6 36.5  
126.3 -12.8 19.7 18.1 83.5  

United Kingdom 28.3 -3.9 10.9 4.9 13.2 1.4  
28.3 -6.4 15.6 5.1 12.7  

United States 37.2 0.0 9.8 1.6 19.9 2.6  
37.2 0.0 12.6 1.6 19.9  

Mean 63.8 -7.1 22.7 6.0 27.7 10.9 

 63.8 -6.8 27.6 5.7 37.8  

 

Table 4 

Mean Percentage Changes of Quinquepartite Decomposition Indexes (Country Groupings) 

Country Group TEb TEc 
Product. 

Change 

(EFF-1) 

× 100 

(TECH-

1) × 100 

(HACC-

1) × 100 

(KACC-

1) × 100 

(RKAC

C-1) × 

100 

Emerging Countries+ 0.71 0.65 90.5 -1.4 13.0 6.3 43.0 20.3 

Developed Countries* 0.85 0.74 39.8 -12.2 31.3 5.7 14.0 2.6 

         
Non-OECD† 0.72 0.71 124.9 7.3 6.9 8.1 64.0 17.9 

OECD 0.80 0.69 46.32 -11.25 27.20 5.39 17.27 8.95 

         
Transition§ 0.61 0.67 114.3 20.0 8.4 3.4 53.6 14.1 

Non-transition 0.82 0.70 51.6 -13.7 26.1 6.6 21.4 10.2 

         
Asian Tigers$ 0.68 0.70 67.9 2.6 11.8 9.6 29.4 2.2 

Latin America& 0.79 0.69 34.4 -12.8 7.7 5.7 25.8 7.6 

         
All countries 0.78 0.69 63.8 -7.1 22.7 6.0 27.7 10.9 

+ Real GDP per capita < 27,500 (2017 US$) in 1999: Argentina, Brazil, China, Czech Republic, Greece, Hungary, 

India, Malaysia, Mexico, Poland, Portugal, Rep. of Korea, Russian Fed., Slovakia, Slovenia, Spain, Turkey. 

* Real GDP per capita > 32,500 (2017 US$) in 1999: Australia, Austria, Belgium, Canada, Denmark, Finland, 

France, Germany, Israel, Italy, Japan, Netherlands, Norway, Singapore, Sweden, Switzerland, Taiwan, United 

Kingdom, United States. 

† Argentina, Brazil, China, India, Malaysia, Russian Fed., Singapore, Taiwan. 

§ China, Czech Republic, Hungary, Poland, Russian Fed., Slovakia, Slovenia. 

$ Japan, Malaysia, Rep. of Korea, Singapore, Taiwan. 

& Argentina, Brazil, Mexico. 
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Fig. 2 Percentage change in output per hour worked and five decomposition indexes plotted against 1999 output 

per hour worked. Each panel contains a GLS regression line. 

 

While studies analyzing earlier periods (e.g., Badunenko and Romero-Ávila (2013) for 1965-

2005, or, Badunenko et al. (2013) for 1965-2007) find that OECD countries grew substantially 

faster than non-OECD countries, we find that this development reversed in the 1999-2019 

period: Non-OECD countries experienced productivity gains almost three times that of OECD 

countries14 primarily because of faster rates of (non-robot) physical capital accumulation and 

                                                           
14 This result could be driven by the exclusion of non-OECD countries with poor growth performance: Contrary 

to previous studies our sample is rather small compared to other convergence studies, such as Kumar and Russell 

(2002), Henderson and Russell (2005), Badunenko et al. (2008), Badunenko and Romer-Ávila (2013), 

Badunenko et al. (2013) and others, and only includes developed and emerging countries. Particularly, 
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greater efficiency gains. Faster robot capital accumulation, though to a lesser extent, also 

contributed to this development. In fact, average efficiency change in OECD countries is 

negative, while non-OECD countries could technologically catch-up. In line with studies on 

earlier growth episodes, still, technological progress in OECD countries is substantially higher 

than in non-OECD countries. Similar patterns of development among OECD and non-OECD 

countries can be observed between transition and non-transition countries. 

The poor growth performance of Latin America is caused primarily by efficiency losses and 

low technological progress. Technological catch-up (positive efficiency change) is only 

observed for a minority of countries/country groups including non-OECD, transition countries 

and the Asian Tigers. The trend of declining average efficiency levels found by Badunenko et 

al. (2008) for the period 1992 to 2000 seems to have continued over the last twenty years. 

Fig. 2 gives a preliminary picture about which of the productivity growth components may have 

contributed to narrowing down the productivity gap between emerging and developed 

countries. Productivity growth and the five productivity-component growth rates are plotted 

against output per hour worked in 1999, along with GLS regression lines.15 Panel (a) is a 

standard growth convergence equation: the statistical significance of the slope coefficient 

supports beta-convergence, i.e., countries with low initial levels of output per hour worked tend 

to grow faster than countries with high initial productivity levels. The statistically significant 

negative slopes in Panel (b), (e), (f) indicate that beta-convergence is primarily driven by (non-

robot) physical capital accumulation, and, though to a lesser extent, by robot capital 

accumulation; efficiency change might also has contributed a bit to beta-convergence. The 

statistically significant positive regression slope coefficient in Panel (c) indicates that relatively 

wealthy countries have benefited much more from technological progress than have less-

                                                           
developing countries from Africa and some Latin American countries (non-OECD) are excluded due to limited 

data availability on industrial robot usage. Robot installation data for some African countries (i.e., Egypt, Tunisia, 

and Morocco), except for South Africa, is only available from 2005 onwards (see, e.g., Klump et al., 2021). 
15 Detailed GLS-regression results are available in Table A1, Appendix A. The country codes used in Fig. 2 are 

explained in Table A2, Appendix A. 
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developed countries. Therefore, technological progress appears to have substantially widened 

international productivity disparities, and counteracts the tendency for physical capital, and 

robot capital accumulation to narrowing down cross-country productivity inequalities. Finally, 

the statistically insignificant regression coefficient in Panel (d) suggests that human capital 

accumulation has little effect on productivity disparities. Since these preliminary conclusions 

are based on first-moment characterizations of the productivity distribution and vulnerable to 

the Quah (1993, 1996, 1997) critique, we turn now to examine the evolution of the entire cross-

section distribution of labor productivity. 

 

5. Analysis of Productivity Distributions 

Fig. 3 shows the distributions of output per hour worked across the 36 countries in our sample 

in 1999 and 2019. The solid (dotted) curve is the estimated 1999 (2019) distribution of output 

per hour worked, with their corresponding mean values shown as vertical lines. By visually 

inspecting both distributions, we observe i) a shift from a bimodal to a unimodal distribution16, 

ii) a substantial rise in average levels of output per hour worked over the 20-year period, and 

iii) a reduction of the dispersion of productivity levels, as indicated by a decrease of the 

coefficient of variation (CV) from 0.476 in 1999 to 0.425 in 2019.17 

Following Henderson and Russell (2005), we aim to explain these features of the change of the 

productivity distribution from 1999 to 2019 in terms of the five components of productivity 

change, paying particular attention to the robot capital deepening component. 

 

                                                           
16 The results of the test developed by Silverman (1981) shown in Table 5, row 1 and 2, indicate that we can reject 

the null hypothesis of a single mode for the 1999 distribution at the 5 % significance-level (p-value=0.02), but 

we cannot reject the null of one mode (p-value=0.20) for the 2019 distribution. 
17 The coefficient of variation is frequently applied to measure sigma-convergence. While Panel (a) in Fig. 2 

provides some evidence for beta-convergence, the decreased coefficient of variation points towards sigma-

convergence across the countries in our sample. 
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Fig. 3 Distributions of labor productivity. The solid curve is the estimated 1999 distribution, and the solid vertical 

line represents the 1999 mean value. The dotted curve is the estimated 2019 distribution, and the dashed vertical 

line represents the 2019 mean value. 

 

Using the quinquepartite decomposition of productivity growth, we rewrite Eq. (9) as follows: 

 

( )c by EFF TECH HACC KACC RKACC y=       (10) 

 

Where b = 1999 and c= 2019. Accordingly, the labor productivity distribution in the current 

year can be constructed by consecutively multiplying the labor productivity distribution in the 

base year by each of the five components. To isolate the impact of each component, we create 

counterfactual distributions by introducing each of the components in sequence. For instance, 

we assess the shift of the labor productivity distribution attributable solely to efficiency changes 

by examining the counterfactual distribution of the variable, 

 

E

by EFF y=   (11) 

 

assuming no technological change, no human capital accumulation, no (non-robot) capital 

deepening, and no robot capital deepening. This counterfactual distribution is shown, along 

with the actual distribution in the base (solid curve) and current period (dashed curve), as a 
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dotted curve in Panel (a) of Fig. 4. We then include sequentially more components in the 

counterfactual distribution to isolate their effects. For instance, we can add technological 

change to 
Ey : 

 

( )ET E

by EFF TECH y TECH y=   =   (12) 

 

This isolates the joint effect of efficiency change and technological progress on the productivity 

distribution and is drawn in Panel (b) of Fig. 4. The additional effect of human capital 

accumulation on the distribution 
ETy  can be assessed by multiplying by HACC such that: 

 

( )ETH ET

by EFF TECH HACC y HACC y=    =   (13) 

 

drawn in Panel (c) of Fig. 4. Panel (d) in Fig. 4 incorporates the effect of capital deepening in 

ETHy  such that: 

 

( )ETHK ETH

by EFF TECH HACC KACC y KACC y=     =   (14) 

 

The effect of the last component, robot capital deepening, can be deduced from comparing the 

counterfactual distribution of 
ETHKy  and the actual distribution in 2019. 

We employ the bootstrapped, calibrated version of the Silverman (1981) test18 for 

multimodality to statistically assess which component (or set of components) causes the shift 

from bimodality to unimodality in the productivity distributions. In addition, we use the 

                                                           
18 For further details, see Hall and York (2001) and Henderson et al. (2008). 
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bootstrapped version of the Li (1996) test to identify the component (set of components) that 

contribute(s) to the overall change in the distribution of labor productivity. The Silverman 

(1981) and the Li (1996) test results are reported in Table 5 and 6, respectively. 

Table 5 shows that each of the following three components alone can explain the emergence of 

unimodality in the distribution: efficiency change, technological change, and robot capital 

deepening. The corresponding p-values in rows 3, 4 and 7 (0.11, 0.44, and 0.14) in Table 5 

indicate that we cannot reject the null-hypothesis of unimodality when each of the single effect 

of EFF, TECH, and RKACC on the 1999 distribution is isolated. When we consider the 

combined effect of two or more components, we find that only the combined effects of KACC 

and HACC (row 15) as well as the combined effects of EFF, TECH, KACC and HACC (row 

28), allow us to reject the null hypothesis of unimodality at the 5 % significance level. This i) 

indicates that capital deepening and human capital accumulation counteract and dominate the 

depolarizing (combined) effect of efficiency change and technological change, and ii) provides 

additional support for the hypothesis that robot capital deepening contributes to the 

depolarization of the labor productivity distribution. Panel (a) of Fig. 4, 6 and 5 show the 

emergence of unimodalism in the counterfactual distributions due only to the effect of EFF, 

TECH and RKACC, respectively. The almost re-emergence of bimodality when the effect of 

KACC is added to RKACC is shown by the dotted curve in Panel (b) of Fig. 5. 

The Li-test results shown in Table 6 indicate that technological change, and (non-robot) 

physical capital deepening are the main contributors to the overall change in the shape of the 

productivity distribution from 1999 to 2019. Row 3 and 4 reveal that each, the effect of TECH 

and KACC alone, can explain the shift from the 1999 to the 2019 distribution.19 Unsurprisingly, 

so does any combination of two or more productivity component effects which include TECH, 

                                                           
19 The isolated effect of technological change on the 1999 productivity distribution is shown in Panel (a) of Fig. 6. 

Its relevance can also be inferred by comparing the counterfactual distribution in Panel (d) of Fig. 5 with the 

actual 2019 distribution. The same reasoning applies for the capital deepening effect regarding Panel (d) in Fig. 

6. 
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KACC, or both, except for EFF and KACC, as well as EFF, KACC, and RKACC. Distributional 

equality between the 2019 productivity distribution and counterfactual distributions evaluating 

the effect of efficiency change, human capital accumulation, and robot capital deepening alone, 

or any combination of two or three of these components on the 1999 distribution, can be rejected 

at the 5 % significance level (see p-values in row 2, 5, 6, 9, 10, 16, and 22 in Table 6). 

Figures 3-6 illustrate that (non-robot) physical capital deepening and efficiency change are the 

main drivers behind the decreased dispersion of the labor productivity distribution. Robot 

capital deepening contributes to the decreased dispersion and human capital accumulation has 

little or no effect. The only component which counteracts the tendency for these components to 

narrowing the cross-country productivity inequalities is technological change. For instance, as 

shown in Panel (a) of Fig. 5 introducing the robot capital deepening component reduces the CV 

of the 1999 labor productivity distribution from 0.476 to 0.454. Further, sequentially adding the 

effect of (non-robot) physical capital deepening, human capital accumulation, and efficiency 

change results in a further decrease of the CV from 0.454 to 0.405, 0.402, and 0.371, 

respectively. 

Next, we inspect the shift of the 1999 mean value of output per hour worked (solid vertical line 

in Fig. 4-6) to its 2019 mean value (dashed vertical line Fig. 4-6). We observe a shift from 33.3 

to 48.68 (both in 2017 PPP adjusted US$). For instance, in Fig. 5 the largest change, in absolute 

values, in output per hour worked is induced by technological progress, followed by capital 

deepening, efficiency change, human capital accumulation and robot capital deepening.20 

Whereas efficiency change is the only component that tends to decrease output per hour 

worked. The magnitude of the average percentage contribution rate of robot capital deepening 

to labor productivity growth (2.25/15.38=14.6%) in Fig. 5 is comparable, though somewhat 

                                                           
20 Fig. 5 shows that the effect or robot capital deepening increases the 1999 mean value of output per hour worked 

from 33.3 to 35.55 US$. Adding sequentially the effect of capital deepening, human capital accumulation, and 

efficiency change, results in a mean value of 41.74, 44.16, and 39.08, respectively. Adding the last component, 

technological change, induces an increase from 39.08 to 48.68. 
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Fig. 4 Counterfactual distributions of output per hour worked. In each panel, the solid curve is the actual 1999 

distribution, the dashed curve is the actual 2019 distribution. The dotted curves in each panel are the counterfactual 

distributions isolating, sequentially, the effects of efficiency ch., technological ch., human capital accumulation, 

and capital deepening. The vertical lines represent the mean values of the corresponding distributions. 

 

 

Fig. 5 Counterfactual distributions of output per hour worked. In each panel, the solid curve is the actual 1999 

distribution, the dashed curve is the actual 2019 distribution. The dotted curves in each panel are the counterfactual 

distributions isolating, sequentially, the effects of robot capital deepening, capital deepening, human capital 

accumulation, and efficiency ch.. The vertical lines represent the mean values of the corresponding distributions. 
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Fig. 6 Counterfactual distributions of output per hour worked.  In each panel, the solid curve is the actual 1999 

distribution, and the dashed curve is the actual 2019 distribution. The dotted curves in each panel are the 

counterfactual distributions isolating, sequentially, the effects of technological change, capital deepening, human 

capital accumulation, and efficiency change. The vertical lines represent the mean values of the corresponding 

distributions. 

 

smaller21 to the 17% (=10.9/63.8) percentage contribution rate found in the second last row of 

Table 4 (cf. footnote 15). 

To sum up, the evidence from the counterfactual distributional analysis and statistical tests in 

Table 5 and 6 indicates that (i) the depolarization (shift from bimodal to unimodal distribution) 

of the labor productivity distribution and (ii) the increase in average output per hour worked are 

primarily driven by technological change, and, in the case of (ii) by (non-robot) capital 

deepening. Efficiency change and robot capital deepening significantly contribute to 

depolarization. (iii) The decreased dispersion of levels of productivity across countries is 

                                                           
21 The reason for this lower percentage contribution rate is that the second last line of Table 3, the unweighted 

means of productivity change and its components, provides the average importance of robot capital deepening 

across countries. But the robot capital deepening component incorporated into the distributional analysis in Fig.5 

is essentially weighted by the initial level of output per hour worked. Recall that the mean robot capital deepening 

effect was relatively small among developed (countries with relatively high initial output per hour worked) and 

relatively large among emerging economies (countries with relatively low initial output per hour worked). 
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primarily driven by (non-robot) capital deepening and efficiency change, whereas robot capital 

deepening somewhat contributes to this development. (iv) The overall effect of robot capital 

deepening on the change of the labor productivity distribution for the 1999-2019 period is 

modest and dominated by other components. Nevertheless, the contribution of robot capital 

deepening to the increase in average output per hour worked should not be neglected. 

 

Table 5  

Modality Tests (p-values) 

 

H0: Distribution Has One Mode 

H1: Distribution Has More than One Mode Bootstrap p-Value 

1 f(y1999) 0.02 

2 f(y2019) 0.20 

3 f(y1999 × EFF) 0.11 

4 f(y1999 × TECH) 0.44 

5 f(y1999 × KACC) 0.00 

6 f(y1999 × HACC) 0.04 

7 f(y1999 × RKACC) 0.14 

8 f(y1999 × EFF × TECH) 0.11 

9 f(y1999 × EFF × KACC) 1.00 

10 f(y1999 × EFF × HACC) 0.15 

11 f(y1999 × EFF × RKACC) 0.38 

12 f(y1999 × TECH × KACC) 0.10 

13 f(y1999 × TECH × HACC) 0.66 

14 f(y1999 × TECH × RKACC) 0.06 

15 f(y1999 × KACC × HACC) 0.02 

16 f(y1999 × KACC × RKACC) 0.05 

17 f(y1999 × HACC × RKACC) 0.38 

18 f(y1999 × EFF × TECH × KACC) 0.28 

19 f(y1999 × EFF × TECH × HACC) 0.15 

20 f(y1999 × EFF × TECH × RKACC) 0.35 

21 f(y1999 × EFF × KACC × HACC) 0.97 

22 f(y1999 × EFF × KACC × RKACC) 0.74 

23 f(y1999 × EFF × HACC × RKACC) 0.77 

24 f(y1999 × TECH × KACC × HACC) 0.14 

25 f(y1999 × TECH × KACC × RKACC) 0.19 

26 f(y1999 × TECH × HACC × RKACC) 0.14 

27 f(y1999 × KACC × HACC × RKACC) 0.46 

28 f(y1999 × EFF × TECH × KACC × HACC) 0.01 

29 f(y1999 × EFF × TECH × KACC × RKACC) 0.38 

30 f(y1999 × EFF × TECH × HACC × RKACC) 0.83 

31 f(y1999 × EFF × KACC × HACC × RKACC) 0.85 

32 f(y1999 × TECH × KACC × HACC × RKACC) 0.28 
We employ the bootstrapped calibrated Silverman test of multimodality due to Hall and York (2001) with 1,000 

bootstrap replications. 
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Table 6  

Distribution Hypothesis Tests (p-values)  

 

H0: Distributions Are Equal 

H1: Distributions Are Not Equal Bootstrap p-Value 

1 g(y2019) vs. f(y1999) 0.012 

2 g(y2019) vs. f(y1999 × EFF) 0.005 

3 g(y2019) vs. f(y1999 × TECH) 0.126 

4 g(y2019) vs. f(y1999 × KACC) 0.088 

5 g(y2019) vs. f(y1999 × HACC) 0.020 

6 g(y2019) vs. f(y1999 × RKACC) 0.023 

7 g(y2019) vs. f(y1999 × EFF × TECH) 0.236 

8 g(y2019) vs. f(y1999 × EFF × KACC) 0.036 

9 g(y2019) vs. f(y1999 × EFF × HACC) 0.009 

10 g(y2019) vs. f(y1999 × EFF × RKACC) 0.006 

11 g(y2019) vs. f(y1999 × TECH × KACC) 0.086 

12 g(y2019) vs. f(y1999 × TECH × HACC) 0.280 

13 g(y2019) vs. f(y1999 × TECH × RKACC) 0.503 

14 g(y2019) vs. f(y1999 × KACC × HACC) 0.354 

15 g(y2019) vs. f(y1999 × KACC × RKACC) 0.339 

16 g(y2019) vs. f(y1999 × HACC × RKACC) 0.049 

17 g(y2019) vs. f(y1999 × EFF × TECH × KACC) 0.882 

18 g(y2019) vs. f(y1999 × EFF × TECH × HACC) 0.536 

19 g(y2019) vs. f(y1999 × EFF × TECH × RKACC) 0.486 

20 g(y2019) vs. f(y1999 × EFF × KACC × HACC) 0.067 

21 g(y2019) vs. f(y1999 × EFF × KACC × RKACC) 0.041 

22 g(y2019) vs. f(y1999 × EFF × HACC × RKACC) 0.016 

23 g(y2019) vs. f(y1999 × TECH × KACC × HACC) 0.100 

24 g(y2019) vs. f(y1999 × TECH × KACC × RKACC) 0.427 

25 g(y2019) vs. f(y1999 × TECH × HACC × RKACC) 0.600 

26 g(y2019) vs. f(y1999 × KACC × HACC × RKACC) 0.643 

27 g(y2019) vs. f(y1999 × EFF × TECH × KACC × HACC) 0.892 

28 g(y2019) vs. f(y1999 × EFF × TECH × KACC × RKACC) 0.954 

29 g(y2019) vs. f(y1999 × EFF × TECH × HACC × RKACC) 0.800 

30 g(y2019) vs. f(y1999 × EFF × KACC × HACC × RKACC) 0.058 

31 g(y2019) vs. f(y1999 × TECH × KACC × HACC × RKACC) 0.217 
The functions g(.) and f(.) are (kernel) distribution functions. We employ bootstrapped Li (1996) tests with 5,000 

bootstrap replications and the Silverman’s (1986) adaptive rule-of-thumb bandwidth. 

 

6. Sensitivity Analyses for Quinquepartite Decomposition 

Having presented the results for a sample of 36 countries over the period 1999-2019 based on 

a specific robot stock estimate obtained from the perpetual inventory model (PIM) and 

assuming a depreciation rate of 15 %, we now turn the focus to present the summary results 

form a wide array of sensitivity analyses. 
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We examine the robustness of our results with respect to the following changes, paying 

particular attention to differences between emerging and developed countries: i) the use of 

alternative robot stock estimates based on different assumptions about robot capital 

depreciation and the change in the average robot quality, and ii) the investigation of the 

subperiods 1999-2009, and 2009-2019. While Table 7 reports means of country groups, 

country-specific results of the sensitivity analyses are available in section B.5. in the 

supplementary material. 

 

6.1. Alternative Robot Stock Estimates 

Panel A in Table 7 shows that the average efficiency scores (both in the 1999 and the 2019) are 

identical to two decimal places, regardless of whether we estimate the robot stock with the 

perpetual inventory method assuming a 5 %, 10 % or 15 % depreciation rate, or if we assume 

an average service life of robots of 12 years with an immediate withdrawal from service 

afterwards (one-hoss shay depreciation). Accordingly, the mean contribution of the five 

productivity components to average productivity growth show little variation with respect to 

the robot stock estimates. For instance, the mean contribution of robot capital deepening across 

emerging, developed and all countries, ranges from 19.5 to 20.6 %, 2.6 to 3.0 %, and 10.7 to 

11.3 %, respectively. 

However, for some individual countries the results can vary substantially between different 

types of robot stock estimates. For instance, regarding the contribution of robot capital 

deepening we find the largest uncertainties for the Czech Republic (8.2-16.3 %), Slovenia (4.6-

8.1 %), the Netherlands (3.3-5.5 %), Portugal (15.6-21.1 %), and Canada (7.2-9.0 %). For all 

other countries the differences in the robot capital deepening component between different 

robot stock estimates are negligible. 

 

 



37 

 

Table 7 

Mean Efficiency Scores and Percentage Change of Quinqupartite Decomposition Indexes 

 TEb TEc 
Productivity 

Change 

(EFF-1) 

× 100 

(TECH-

1) × 100 

(HACC-

1) × 100 

(KACC-

1) × 100 

(RKACC-

1) × 100 

Period 1999-2019 

Panel A: Alternative robot stock estimates 

One-hoss shay depreciation, 12 years, quality change adjusted 

Emerging 0.71 0.65 90.5 -1.7 13.0 6.3 44.0 19.5 

Developed 0.85 0.74 39.8 -12.3 31.3 5.7 13.8 2.8 

All 0.78 0.69 63.8 -7.3 22.7 6.0 28.0 10.7 

PIM, δ =5 %, quality change adjusted 

Emerging 0.71 0.65 90.5 -1.9 12.7 6.3 43.0 20.6 

Developed 0.85 0.74 39.8 -12.4 31.3 5.8 13.7 3.0 

All 0.78 0.69 63.8 -7.4 22.5 6.0 27.5 11.3 

PIM, δ=10 %, quality change adjusted  
Emerging 0.71 0.65 90.5 -1.5 12.9 6.3 43.0 20.3 

Developed 0.85 0.74 39.8 -12.3 31.4 5.8 13.9 2.7 

All 0.78 0.69 63.8 -7.2 22.6 6.0 27.6 11.0 

PIM, δ=15 %, quality change adjusted 

Emerging 0.71 0.65 90.5 -1.4 13.0 6.3 43.0 20.3 

Developed 0.85 0.74 39.8 -12.2 31.3 5.7 14.0 2.6 

All 0.78 0.69 63.8 -7.1 22.7 6.0 27.7 10.9 

PIM, δ=15 %, no quality change 

Emerging 0.71 0.65 90.5 -1.4 14.5 6.0 41.5 19.3 

Developed 0.85 0.74 39.8 -12.3 32.1 5.8 14.3 1.7 

All 0.78 0.70 63.8 -7.2 23.8 5.9 27.2 10.0 

Panel B: Without robots 

Emerging 0.68 0.63 90.5 -0.84 20.7 5.5 64.2  
Developed 0.84 0.73 39.8 -12.12 33.7 6.0 14.2  
All 0.76 0.69 63.8 -6.8 27.6 5.7 37.8  

Subperiod 1999-2009 

Panel C: With robots (PIM, δ=15 %, quality adjustment) 

Emerging 0.71 0.69 49.3 1.1 9.0 2.6 23.9 10.0 

Developed 0.85 0.72 24.2 -13.8 27.8 2.4 11.0 1.3 

All 0.78 0.71 36.1 -6.8 18.9 2.5 17.1 5.5 

Panel D: Without robots 

Emerging 0.68 0.66 49.3 0.7 13.5 2.4 32.0  

Developed 0.84 0.72 24.2 -13.3 28.3 2.4 11.6  

All 0.76 0.69 36.1 -6.7 21.3 2.4 21.3  

Subperiod 2009-2019 

Panel E: With robots (PIM, δ=15 %, quality adjustment) 

Emerging 0.69 0.65 24.8 -3.7 2.9 1.8 19.5 6.8 

Developed 0.72 0.74 12.4 2.0 2.2 1.3 6.0 0.6 

All 0.71 0.69 18.3 -0.7 2.5 1.5 12.3 3.5 

Panel F: Without robots 

Emerging 0.66 0.63 24.8 -2.2 5.6 1.6 21.2  

Developed 0.72 0.73 12.4 1.6 3.2 1.4 5.9  

All 0.69 0.69 18.3 -0.2 4.4 1.5 13.1  
PIM is perpetual inventory method, and δ is the assumed depreciation rate. 
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Comparing the average contribution rates of the growth components with and without adjusting 

the robot stock estimates for robot quality changes, reveals that overall, there are only modest 

changes and the qualitive results discussed above remain unaltered. Though, the average 

contribution of robot capital deepening to labor productivity growth is somewhat reduced for 

both emerging and developed countries if quality-changes of robots are ignored. Larger 

deviations are mainly found for some individual countries. For most of the countries we find 

that ignoring quality-changes leads to an underestimation of the contribution of robot capital 

deepening to labor productivity growth. 

 

6.2. Subperiods 

Panel C and E in Table 7 present the mean productivity growth rates and the five components 

for the subperiods 1999-2009, and 2009-2019, respectively. Panel D and F show the 

corresponding results for the decomposition ignoring robot capital as a separate production 

factor. First, we can observe that, for both developed and emerging countries, average 

productivity growth substantially slows down in the period after the financial crisis (2009-

2019); in both groups of countries the average productivity growth rate over the period 2009-

2019 is about half of the average growth rate of the subperiod before. The average growth rate 

of output per hour worked across all 36 countries is 36.1 % and 18.3 % for the 1999-2009, and 

the 2009-2019 period, respectively. 

However, not only the magnitude of productivity growth changes, but we also observe a shift 

in the relative importance of the five productivity growth components: considering the averages 

across all countries we observe that in the 1999-2009 period technological progress (18.9 %) 

and (non-robot) capital deepening (17.1 %) are more or less equally contributing to productivity 

growth (line 3 in Panel C). Whereas, in the 2009-2019 period the (non-robot) physical capital 

deepening becomes the major driver of productivity growth (line 3 in Panel E). Its magnitude 

(12.3 %) is more than three times as high as the second largest contributor, robot capital 
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deepening (3.5 %), and almost five times as large as the contribution of technological progress 

(2.5 %). Hence, the finding that technological progress is the main force behind the 

transformation of the productivity distribution between 1999 and 2019 is mainly driven by the 

period before the financial crisis. 

Furthermore, we observe that the contribution of robot capital deepening to productivity growth 

gains in importance in the period after the financial crisis. While robot capital deepening was 

the fourth largest driver of productivity growth across all 36 countries in the 1999-2009 (line 3 

in Panel C) period it becomes the second most important driver in the 2009-2019 period (line 3 

in Panel E). This development is mainly driven by emerging countries: we observe an 

increasing importance of the contribution of robot capital deepening to productivity growth for 

emerging countries but not for developed countries. The main finding in section 4.2. that the 

contribution of robot capital deepening to productivity growth is considerably higher in 

emerging than in developed countries over the 1999-2019 period, holds for both, the 1999-2009 

and the 2009-2019 period. The gap in the contribution of robot capital deepening to productivity 

growth between emerging and developed countries seems to amplify in the period after the 

financial crisis. 

Finally, for both subperiods we compare the results of the decomposition considering robots as 

separate production factor with the results of the decomposition that does not. Regarding the 

1999-2009 period, line 3 in Panel C and Panel D of Table 7 reveal the tendency that 

incorporating robot capital as separate production factor into the analysis substantially reduces 

the average contribution to productivity growth attributable to (non-robot) physical capital 

deepening and technological progress as found in our baseline results for the 1999-2019 period. 

This trend seems to be broken as indicated by line 3 in Panel E and F over the 2009-2019 period: 

the robot capital deepening component absorbs relatively little form the (non-robot) physical 

capital component, which shows a fall from 13.1 % to 12.3 %, but mainly reduces the average 

contribution to productivity growth attributable to technological progress (reduction from 4.4 
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% to 2.5 %) and efficiency change (-0.2 % to -0.7 %). This indicates that ignoring robots as 

separate production factor would efficiency change and technological progress capture the 

favorable effect of industrial robots on the catching up to the frontier and the outward shift of 

the frontier, respectively, over the 2009-2019 period. 

 

6.3. Summing up 

To sum up the sensitivity analysis shows that i) the baseline results presented in section 4 and 

5 are robust to other assumptions about the depreciation of the robot capital stock and ii) that 

the development after the period of the financial crisis is characterized by a slowdown of 

average productivity growth and a change in the relative importance of the productivity growth 

components. In particular, the average contributions of (non-robot) physical capital and robot 

capital deepening to productivity growth have gained in importance, and that of technological 

progress declined over the last decade relative to the 1999-2009 period. Due to the low 

productivity growth performance over the 2009-2019 period relative to the decade before, the 

development over the 1999-2019 period tends to overproportionally reflect the pre-crisis 

growth patterns. 

 

7. Conclusion 

First, we analyze the contribution of robotization and five other growth factors (i.e., efficiency 

change, technological change, non-robot physical capital deepening, and human capital 

accumulation) to labor productivity growth over the period 1999 to 2019 in 19 developed and 

17 emerging countries. Second, we study if and by how much industrial robots contributed to 

convergence of cross-country productivity levels observed in our sample. We apply the non-

parametric production frontier approach developed by Kumar and Russell (2002), and refined 

by Henderson and Russell (2005) and extend it by considering industrial robots as separate 
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production factor. Production frontiers and distances to the frontiers are estimated by Data 

Envelopment Analysis, a method based on linear programming models. 

Our results confirm the positive relationship between robot adoption and labor productivity 

growth found in previous studies. However, substantial contributions of robotization to labor 

productivity growth over the period 1999 to 2019 are mainly found in emerging countries, such 

as India, China, Turkey, Greece, Portugal, Mexico, Argentina, Brazil and the Eastern European 

countries Hungary, Slovenia, Slovakia, and the Czech Republic. For developed countries the 

contribution of robot capital deepening to labor-productivity growth is much less important, 

except for Israel, Canada and Norway. We observe that the contribution of robot capital 

deepening to productivity growth gains in importance in the 2009-2019 period after the 

financial crisis for emerging countries, but not for developed countries. 

We find some evidence of unconditional beta-convergence, and sigma-convergence in our 

sample of 36 robot-adopting countries over the period 1999 to 2019. First, countries with lower 

initial productivity levels experienced, on average, faster productivity growth. After (non-robot) 

physical capital deepening, robotization is the second most important driver behind this 

development. Second, the dispersion of levels of productivities across countries decreased, as 

indicated by the reduced coefficient of variation of the productivity distribution in 2019 relative 

to 1999. This is primarily driven by (non-robot) capital deepening and efficiency change, but 

robotization also contributed to this development. However, the effect of robot capital 

deepening on the shift of the entire labor productivity distribution is rather modest and 

dominated by other growth factors such as technological change. Nevertheless, statistical tests 

confirm that robotization significantly contributed to the depolarization (a shift from a bimodal 

to unimodal distribution) of the labor productivity distribution. 

Note that our sample of countries is not representative for the entire world and only includes 

robot adopting countries. In particular, developing countries from Africa and some Latin 

American countries are excluded due to limited data availability on industrial robot usage. 
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Including non-robot adopting countries in our sample could lead to very different results 

regarding the convergence of worldwide labor productivity levels. It is conceivable that an 

analysis based on such a larger sample of countries could reveal that industrial robot diffusion 

contributes to a widening of worldwide income and productivity disparities. 

Furthermore, we find that disembodying robot capital from total physical capital and 

considering robots as separate production factor changes the relative importance of the growth 

factors: On average, the importance of physical capital deepening and technological change 

decrease by about the same magnitude as the robot capital deepening component gains in 

importance. This indicates that robotization is not only affecting productivity growth via capital 

accumulation but might be linked to broader technological innovations that have the potential 

to push the world production frontier outward. 

The application of industrial robots is highly concentrated in a few manufacturing sectors, such 

as the automobile, electrical/electronics, metal, and machinery industry (Müller and Kutzbach, 

2020). For less developed countries that have a sufficiently large manufacturing sector and a 

favorable industry structure, robotization provides a chance to boost productivity levels and to 

contribute to the catching-up with developed countries. Future research could analyze how the 

effects of robotization on labor productivity growth, employment change and convergence 

differ across robot using industries. 
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Appendix A 

 

Table A1 

Growth regressions of the percentage change in output per hour worked and the five decomposition 

indices on output per hour worked in base (1999) period 

Variable  Dependent Variable 

 (a) (b) (c) (d) (e) (f) 

 Productivity 

Change 

(EFF-1) 

× 100 

(TECH-1) 

× 100 

(HACC-1) 

× 100 

(KACC-1) 

× 100 

(RKACC-1) 

× 100  

Constant 143.77*** 

(17.50) 

10.02 

(9.71) 

-4.61 

(6.55) 

7.80*** 

(1.94) 

75.86*** 

(13.75) 

30.06*** 

(6.99) 

Output per 

hour worked in 

1999 

-2.40*** 

(0.48) 

-0.51* 

(0.26) 

0.82*** 

(0.18) 

-0.05 

(0.05) 

-1.45*** 

(0.37) 

-0.57*** 

(0.19) 

Number of 

obs. 

36 36 36 36 36 36 

R-squared 0.429 0.101 0.384 0.030 0.306 0.212 
Significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively. Coefficient estimates of 

GLS-regressions are reported. Standard errors are shown in parenthesis. 

 

 

Table A2 

Country-Codes and Classification 

Emerging Countries  Developed Countries 

Code Country   Code Country 

AR Argentina  AU Australia 

BR Brazil  AT Austria 

CN China  BE Belgium 

CZ Czech Republic  CA Canada 

GR Greece  DK Denmark 

HU Hungary  FI Finland 

IN India  FR France 

MY Malaysia  DE Germany 

MX Mexico  IL Israel 

PL Poland  IT Italy 

PT Portugal  JP Japan 

KR Republic of Korea  NL Netherlands 

RU Russian Federation  NO Norway 

SK Slovakia  SG Singapore 

SL Slovenia  SE Sweden 

ES Spain  CH Switzerland 

TR Turkey  TW Taiwan 

   UK United Kingdom 

   US United States 
Emerging countries: GDP per capita < 27,500 (2017 US$) in 1999. Developed countries: Real GDP per capita > 

32,500 (2017 US$) in 1999.  
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Supplementary Material 

 

A. Overview on the preparation of the robot installations and stocks data 

Data on robot installations and stocks have been obtained from the International Federation of 

Robotics (IFR). Based on this data base and on additional information gained from the annual 

reports (IFR, 2005-2020) we prepared our data base consisting of time series for installations 

and several measures of stocks for 36 countries. These data preparation steps aim at correcting, 

enhancing, and expanding the original data as seen appropriate for our research project. The 

issues described and the data preparation applied by us have considerable overlap with the ones 

described by Klump, Jurkat and Schneider (2021) and by other scientific work based on the 

IFR data. The manipulation steps can be grouped into five broad groups: i) simple resolution of 

inconsistencies in the IFR data set, e.g., when data on installations and stocks of robots are not 

consistent with each other; ii) disaggregation of aggregated data when the annual reports of IFR 

give sufficient information on approximate shares for disaggregation; iii) extrapolation back in 

time of installations and stocks when time series start with stocks higher than installations; iv) 

extrapolation back in time of installation and stocks when official time series start with identical 

values for installation and stocks but plausibility considerations and, occasionally, verbal 

explanations in the annual reports suggest that the “true” numbers of installations and stocks 

start earlier than that; v) taking account of country specific information from annual reports to 

make adjustment of the time series. In the following we describe these data preparation 

procedures in more detail. It should be noted that several countries are undergoing more than 

one of the procedures sketched above.). 

Simple resolution of inconsistencies.  For six countries in our sample (Argentina, Australia, 

Greece, Israel, and Slovenia) we found that data for the installations of robots were stated as 

zero from 2014 on, even though considering the continuation of the robot stock series they 
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could be inferred to be positive.22 In fact, given that the stock series is calculated by IFR using 

the one-hoss-shay method (OHS) with an asset live of 12 years, i.e., making the assumption 

that robots have to be replaced by new robots after 12 years of usage, we can deduce the exact 

values for the installation series. 

Disaggregation of aggregated data.  This group of data manipulation steps concerns two groups 

of countries: first, Australia and New Zealand, and second, United States, Mexico and Canada. 

The IFR reports separate data series for Australia and New Zealand only from 2005. For 2002-

2004 the IFR database provides data for Australia and New Zealand only in aggregated form. 

Data on installations in New Zealand in 2002-2004 are nevertheless reported in the annual 

reports and thus can be used to construct the series for Australia. Prior to 2002 the Australian 

data series cover only Australia and need no correction. Similarly, the installations time series 

for North America in 1999-2010, though only given in disaggregated form in the database, are 

provided separately for Canada, Mexico and United States in the annual reports. Prior to 1999 

we disaggregated the installations series by using the average shares of the three countries for 

the years 1999-2001. The stock data (OHS) for 1993-2001 were disaggregated by also using 

these shares and for 2002 and 2003 by partially considering the newly available installations 

data; from 2004 on, the regular OHS procedure could be used to recalculate the disaggregated 

values of robot stocks for all three countries. 

Extrapolation back in time based on reverse-OHS.  For 26 countries the time series started in 

1993. For these countries the stocks in 1993 are higher than the installations, thus revealing 

prior data collections or assumptions taken by IFR about robot installations prior to 1993. Given 

the OHS-method consistently applied by IFR, this allowed us to calculate earlier stocks and 

installations by reversing OHS, furnishing us plausible time series in most cases. Even the 

                                                           
22 The same issue is present for many other countries in the IFR database as well, among them Ireland, 

Philippines, New Zealand. A possible reason for this might be the application of compliance rules for 

privacy protection, which, however, is seemingly only applied to the installation series. 
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numbers for the Russian Federation, which has an interesting history of early adoption of 

industrial robots in the days of the Soviet Union (see Cooper, 1984) and therefore is reported 

by IFR to have a robot stock of 30000 and installations of 0 in 1993 cannot be discarded a-

priori. If we want to be able to calculate robot stock measures alternative to the OHS robot stock 

presented by IFR we cannot escape the necessity to extrapolate the installations series back in 

time. However, since these data are not published by IFR in the strict sense of the word, we 

used it only to calculate the robot stocks series, including the initial robot stocks in 1995, by the 

permanent inventory method (PIM) 

Extrapolation back in time based on plausibility considerations.  For eight countries in our 

sample (Brazil, China, Greece, Israel, India, Malaysia, Argentina, and Turkey) the data series 

start in 1999 with the same value for installations and stocks, which must be considered as 

implausible, even in cases of small installations. As occasionally is admitted by IFR the true 

installations series must start earlier and stocks corrected accordingly (e.g., in the case of 

Malaysia the annual report 2005 on page 150 says this about the reported robot stock in 2004: 

“This value has to be considered as a minimal value.”). Therefore, using the observed pattern 

of growth, we extrapolated the installations series back for earlier years 1987-1998. For most 

countries a linear growth trend was assumed and the value for 1998 was chosen so that it fitted 

well with the observed average for 1999-2001. For China, based on its growth experience in 

robot installations 2000-2006, we assumed exponential growth with an approximate annual 

growth of 58% prior to the start of the official IFR data in 1999. All the extrapolations for earlier 

years, of course, were not allowed to furnish negative values. 

Taking account of country specific information.  For several countries the annual reports contain 

information that suggests correction of the data published in the database. For Turkey IFR 

reports a large increase in installation in 2005 and concedes that “this was the result of more 

complete data and increasing investments by the automobile industry” (IFR, 2006, p. 126). Not 

knowing the exact relevance of the underreporting prior to 2005, we assumed its share to be 
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50% of the increase in that year and correspondingly estimated proportionally higher values 

than reported for all years up to 2004. For Brazil and Argentina, the annual reports of IFR (2005 

and later) also describe a severe problem of underreporting. IFR (2005) is most explicit about 

this problem, stating among others, that in 2004 about 500-600 units should be added to the 

sum of these countries and that the “true operational stock can be assumed to be much higher.” 

We thus multiplied the original series for these countries by a factor between 1,56 and 2,64 

where we tried to find a middle way between preserving the variation in the original series and 

integrating all available information about underreporting. For Japan, there is a break in the 

time series between 2000 and 2001 due to a change in the underlying definition of industrial 

robots. Before, Japanese data also include dedicated machinery and thus are overstated. After 

scrutinizing the data by application type, we find that the break is occurring exclusively in the 

class of assembling and disassembling robots, which otherwise displays a stable development 

in the years around the break. We decided that the number of robot installations to be subtracted 

in years prior to 2001 can be estimated by applying the same proportion as in the years just 

before and after the break in that class. After this correction to the installation series was used 

to calculate the OHS-based stock series. 

For reasons of space the data preparation has not been described in full detail here. More details 

can be requested directly from the authors. 
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B. Figures and Tables 

B.1.  Robot quality index 

 

 

Fig. B1 Evolution of the quality index of robots 1993-2005 as reported by IFR and own projection based on an 

estimated linear trend. 
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B.2. Evolution of robot stocks  

 

 

Fig. B2a Evolution of robot stocks (non-quality-adjusted) in emerging countries over 1995-2019 based on PIM 

15 %, PIM 10 %, PIM 5 %, and one-hoss-shay depreciation assuming a 12-year service life of robots. 
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Fig. B2b Evolution of robot stocks (non-quality-adjusted) in developed countries over 1995-2019 based on PIM 

15 %, PIM 10 %, PIM 5 %, and one-hoss-shay depreciation assuming a 12-year service life of robots. 
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B.3. Robot intensity (growth) ranking 

Table B1 

Country ranking by (growth of) robot intensity 

  Ranking by robot intensity 

in 1999 
 Ranking by robot intensity 

in 2019 
 Ranking by growth of robot 

intensity between 1999-2019 
   

Rank   Country 

Robot 

Intensity  Country 

Robot 

Intensity  Country 

Growth rate of 

robot intensity 

1  Japan* 136.99  Rep. of Korea 324.04  China 49,522% 

2  Germany* 74.91  Japan* 199.36  India 7,527% 

3  Singapore* 56.81  Germany* 187.09  Hungary 5,872% 

4  Belgium* 45.13  Taiwan* 168.62  Poland 3,519% 

5  Italy* 44.92  Singapore* 148.64  Turkey 2,442% 

6  Sweden* 42.09  Slovenia 139.36  Czech Rep. 2,137% 

7  Rep. of Korea 34.12  Czech Rep. 112.40  Slovenia 1,626% 

8  Finland* 33.64  Slovakia 101.57  Slovakia 1,496% 

9  Switzerland* 26.46  Italy* 98.32  Mexico 1,265% 

10  France* 24.16  Sweden* 93.15  Argentina 1,171% 

11  Spain 22.58  Austria* 92.07  Taiwan* 944% 

12  Austria* 19.46  Denmark* 89.05  Greece 875% 

13  Denmark* 17.77  Switzerland* 70.80  Rep. of Korea 850% 

14  United States* 17.04  Belgium* 67.18  Israel* 776% 

15  Taiwan* 16.16  Finland* 62.63  Canada* 639% 

16  UK* 13.42  Spain 61.64  Portugal 559% 

17  Netherlands* 11.18  Hungary 61.54  Brazil 558% 

18  Australia* 8.67  United States* 58.32  Malaysia 438% 

19  Norway* 8.19  France* 58.18  Netherlands* 418% 

20  Slovenia 8.07  Netherlands* 57.93  Denmark* 401% 

21  Canada* 6.78  Canada* 50.13  Austria* 373% 

22  Slovakia 6.36  Portugal 35.71  United States* 242% 

23  Portugal 5.42  China 28.73  Spain 173% 

24  Czech Rep. 5.02  Poland 28.11  Switzerland* 168% 

25  Malaysia 4.19  Malaysia 22.55  Singapore* 162% 

26  Russian Fed. 2.57  UK* 21.01  Germany* 150% 

27  Israel* 1.67  Mexico 19.52  France* 141% 

28  Mexico 1.43  Norway* 18.77  Norway* 129% 

29  Brazil 1.19  Turkey 16.37  Sweden* 121% 

30  Hungary 1.03  Israel* 14.64  Italy* 119% 

31  Poland 0.78  Australia* 14.17  Finland* 86% 

32  Turkey 0.64  Argentina 8.16  Australia* 63% 

33  Argentina 0.64  Brazil 7.84  UK* 57% 

34  Greece 0.42  Greece 4.13  Belgium* 49% 

35  China 0.06  Russian Fed. 2.69  Japan* 46% 

36  India 0.02  India 1.47  Russian Fed. 4% 

Robot intensity is measured as number of robots per one hundred million hours worked. Number of robots are 

estimated with the perpetual inventory method assuming a depreciation rate of 15 %. Developed countries and 

emerging countries are shown with and without asterisk, respectively. 
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B.4.  Descriptive statistics 

 

Table B2 

Descriptive Statistics of Input and Output Variables used for DEA-models by country groups 

 Emerging 

Countries 

(n=425) 

Developed 

Countries 

(n=475) 

All (n=900) 

Output (output-side real-GDP at 2017 PPP adjusted 

mill. US$) 

1,792,303 

(42,179-

20,257,660) 

2,028,410 

(79,247-

20,595,844) 

1,916,915 

(42,179- 
20,595,844) 

    

Efficiency units of labor (mill. hours worked × 

human capital index) 

443,561 

(4,922-  

4,676,128) 

127,914 

(10,171-  

1,047,767) 

276,970 

(4,922-  

4,676,128) 

    

Non-robot physical capital stock (in PPP adjusted 

mill. 2017 US$) 

7,456,401 

(380,878- 

80,446,479) 

9,372,176 

(349,194-

69,157,981) 

8,467,504 

(349,194- 

80,446,479) 

    

Quality-adjusted industrial robot stock (in physical 

units based on PIM with δ=15 %) 

25,895  

(24- 

1,333,562) 

40,810  

(49-   

589,222) 

33,767  

(24-  

1,333,562) 

Mean of variables are reported. Minimum and maximum observed values are shown in parenthesis. Means are 

based on a balanced panel of 17 emerging and 19 developed countries for the years 1995-2019 covering 900 

observations. 
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Table B3 

Descriptive statistics of levels of labor productivity, capital intensities and human capital index by 

country groups in 1999 and 2019 

 Emerging 

Countries 

(n=17) 

Developed 

Countries 

(n=19) 

All (n=36) 

Year 1999 

Labor productivity (Output per hour worked, 

PPP-adjusted 2017 US$) 

19.30 

(2.59-39.08) 

45.83 

(24.30-60.44) 

33.30 

(2.59 -60.44) 

    

Robot intensity (quality-adjusted number of 

robots per mill. hours worked) 

6.77 

(0.03-41.38) 

38.62 

(2.13-155.03) 

23.58 

(0.03-155.03) 

    

Non-robot capital intensity (non-robot 

physical capital stock per hour worked, PPP-

adjusted 2017 US$) 

119.64 

(8.68-246.49) 

239.52 

(122.79- 341.21) 

182.91 

(8.68-341.21) 

    

Human capital index 
2.67 

(1.75-3.53) 

3.20 

(2.66-3.57) 

2.95 

(1.75-3.57) 

 

Year 2019 

Labor productivity (Output per hour worked, 

PPP-adjusted 2017 US$) 

31.99 

(8.68-56.30) 

63.62 

(40.87-100.33) 

48.68 

(8.68-100.33) 

    

Robot intensity (quality-adjusted number of 

robots per mill. hours worked) 

149.32 

(3.88-836.85) 

210.59 

(34.20-497.92) 

181.66 

(3.88-836.85) 

    

Non-robot capital intensity (non-robot 

physical capital stock per hour worked, PPP-

adjusted 2017 US$) 

174.19 

(33.56-348.39) 

321.26 

(145.88-457.68) 

251.81 

(33.56-457.68) 

    

Human capital index 
3.13 

(2.17-3.85) 

3.57 

(3.15-4.35) 

3.36 

(2.17-4.35) 

Mean of variables are reported. Minimum and maximum observed values are shown in parenthesis. The quality-

adjusted number of robots is estimated with the perpetual inventory method assuming a depreciation rate of 15 %. 

The quality index of robots shown in Fig. B1 is used to adjust robot installations for quality changes. 

 

Table B4 

Descriptive statistics of growth rates of labor productivity, capital intensities and human capital index 

over the period 1999 to 2019 

 Emerging 

Countries (n=17) 

Developed 

Countries (n=19) 

All (n=36) 

Labor productivity growth (%) 90.5  

(15.26-252.15) 

39.8 

(9.89-124.50) 

63.8 

(9.89-252.15) 

Robot intensity growth (%) 

 

9,451.3 

(268.8-92,066.3) 

662.5 

(202.3-2087.7) 

4,812.7 

(202.3 92,066.3) 

Non-robot capital intensity growth (%) 

 

88.0 

(3.9-435.2) 

34.8 

(-3.7-97.6) 

59.9 

(-3.7-435.2) 

Human capital index growth (%) 

 

18.5 

(4.0-54.0) 

12.4 

(0.7-63.4) 

15.3 

(0.7-63.4) 

Mean of variables are reported. Minimum and maximum observed values are shown in parenthesis. Quality-

adjusted number of robots are estimated with the perpetual inventory method assuming a depreciation rate of 15 

%. The quality index of robots shown in Fig. B1 is used to adjust robot installations for quality changes. 
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B.5.  Detailed results of sensitivity analysis 

Table B5a 

Country-specific results of sensitivity analysis for subperiods 1999-2009 and 2009-2019, with and 

without robot capital as separate production factor 

Country/ 

Subperiod 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Argentina       
  1999-2009 6.2 -1.3 3.1 1.4 0.5 2.5 

 6.2 -4.8 9.2 1.8 0.5  

  2009-2019 32.3 -9.5 2.6 2.7 29.9 6.9 

 32.3 -10.6 9.5 1.3 33.5  

Australia       

  1999-2009 17.5 -3.0 7.1 -0.7 11.8 1.8 

 17.5 -1.0 7.4 -0.7 11.2  

  2009-2019 15.6 -1.2 1.4 0.5 14.6 0.1 

 15.6 -3.6 4.7 0.7 13.8  

Austria       

  1999-2009 26.7 -21.0 39.9 3.0 11.1 0.2 

 26.7 -21.0 40.2 3.0 11.0  

  2009-2019 18.5 4.7 1.1 0.6 11.4 0.0 

 18.5 4.7 1.1 0.6 11.4  

Belgium       

  1999-2009 26.0 -36.2 76.2 2.5 9.3 0.0 

 26.0 -36.2 76.2 2.5 9.3  

  2009-2019 2.9 0.7 0.0 0.7 1.5 0.0 

 2.9 0.7 0.0 0.7 1.5  

Brazil       

  1999-2009 26.5 4.5 3.6 4.7 8.5 2.8 

 26.5 3.2 7.5 4.7 8.8  

  2009-2019 11.3 -16.0 3.4 7.1 13.8 5.1 

 11.3 -18.9 11.8 4.7 17.1  

Canada       

  1999-2009 8.8 -13.3 6.1 1.3 13.2 3.2 

 8.8 -10.0 6.0 1.3 12.6  

  2009-2019 14.1 -4.8 3.4 0.4 13.8 1.4 

 14.1 -5.1 5.3 0.4 13.6  

China       

  1999-2009 120.3 -7.2 2.2 0.6 113.0 8.4 

 120.3 -7.2 2.3 0.5 130.9  

  2009-2019 59.8 -25.2 0.2 0.3 109.2 1.6 

 59.8 -25.2 0.3 0.3 112.3  

Czech Republic       
  1999-2009 42.4 17.9 6.8 1.3 4.9 6.4 

 42.4 20.7 8.9 0.8 7.5  

  2009-2019 19.2 15.2 3.8 0.2 -2.2 1.7 

 19.2 15.2 5.4 0.3 -2.2  



60 

 

Table B5a (continued) 

Country-specific results of sensitivity analysis for subperiods 1999-2009 and 2009-2019, with and 

without robot capital as separate production factor 

Country/ 

Subperiod 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Denmark       

  1999-2009 32.6 -14.8 30.2 2.5 16.4 0.3 

 32.6 -14.8 30.7 2.6 16.2  

  2009-2019 21.0 9.1 1.4 0.8 8.4 0.0 

 21.0 9.1 1.4 0.8 8.4  

Finland       

  1999-2009 19.4 -9.7 16.8 3.8 9.1 0.0 

 19.4 -9.7 16.8 3.8 9.1  

  2009-2019 6.3 -5.9 3.0 0.9 8.4 0.3 

 6.3 -5.9 3.3 1.1 8.3  

France       

  1999-2009 18.9 -35.3 63.6 3.1 9.0 0.0 

 18.9 -35.3 63.6 3.1 9.0  

  2009-2019 13.4 2.5 0.2 1.6 8.6 0.0 

 13.4 2.5 0.2 1.6 8.6  

Germany       

  1999-2009 19.7 -11.6 21.8 1.5 9.5 0.0 

 19.7 -11.6 21.8 1.5 9.5  

  2009-2019 11.8 6.6 2.7 0.2 2.0 0.0 

 11.8 6.6 2.7 0.2 2.0  

Greece       

  1999-2009 22.7 -16.8 2.1 5.6 0.3 36.4 

 22.7 -15.8 30.2 4.4 7.2  

  2009-2019 -6.0 -44.3 0.0 4.1 0.3 61.4 

 -6.0 -15.6 2.4 1.3 7.2  

Hungary       

  1999-2009 63.0 0.0 1.9 3.2 27.8 21.2 

 63.0 0.7 5.4 3.3 48.7  

  2009-2019 8.1 2.3 4.7 1.1 -3.1 3.1 

 8.1 3.4 6.7 1.2 -3.1  

India       

  1999-2009 92.6 -8.9 0.4 2.1 50.0 37.5 

 92.6 -5.5 3.3 0.6 96.2  

  2009-2019 74.2 -3.9 0.0 0.5 71.6 5.1 

 74.2 -0.9 0.3 0.3 74.7  

Israel       

  1999-2009 -4.6 -4.1 2.1 2.7 -9.1 4.3 

 -4.6 -0.1 5.0 1.2 -10.1  

  2009-2019 15.2 -1.9 3.0 2.5 7.1 4.0 

 15.2 -4.5 9.4 3.0 7.0  
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Table B5a (continued) 

Country-specific results of sensitivity analysis for subperiods 1999-2009 and 2009-2019, with and 

without robot capital as separate production factor 

Country/ 

Subperiod 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Italy       

  1999-2009 7.7 -45.6 74.0 4.5 8.8 0.0 

 7.7 -45.6 74.0 4.5 8.8  

  2009-2019 9.6 0.6 0.0 2.4 6.4 0.0 

 9.6 0.6 0.0 2.4 6.4  

Japan       

  1999-2009 9.7 -8.5 9.2 1.3 8.3 0.0 

 9.7 -8.5 9.2 1.3 8.3  

  2009-2019 1.1 3.2 5.5 0.8 -7.8 0.0 

 1.1 3.2 5.5 0.8 -7.8  

Malaysia       

  1999-2009 56.0 13.6 5.8 2.5 24.9 1.4 

 56.0 12.7 7.5 2.6 25.5  

  2009-2019 18.8 -2.0 5.9 1.9 8.1 3.9 

 18.8 -2.5 10.1 2.3 8.1  

Mexico       

  1999-2009 18.1 -10.0 3.1 1.8 21.3 3.2 

 18.1 -10.9 6.7 1.8 22.0  

  2009-2019 3.2 -6.2 5.2 1.8 -2.0 4.8 

 3.2 -6.3 10.0 2.2 -2.0  

Netherlands       

  1999-2009 27.9 -18.9 36.8 2.3 10.5 1.9 

 27.9 -18.9 37.6 2.4 11.9  

  2009-2019 5.0 2.0 1.3 0.6 0.6 0.4 

 5.0 2.0 1.6 0.7 0.6  

Norway 
      

  1999-2009 75.6 -7.2 38.3 3.7 17.2 12.4 

 75.6 -7.2 40.3 3.9 29.8  

  2009-2019 -5.4 -8.0 0.1 0.4 2.0 0.2 

 -5.4 -7.9 0.2 0.5 2.0  

Poland       

  1999-2009 39.4 0.0 5.6 1.6 24.9 4.0 

 39.4 0.0 8.9 1.0 26.7  

  2009-2019 46.5 0.0 6.7 1.3 31.8 2.8 

 46.5 0.0 7.1 1.2 35.2  

Portugal       

  1999-2009 22.6 -33.9 44.4 4.1 7.9 14.3 

 22.6 -33.9 54.8 3.2 16.1  

  2009-2019 13.0 5.4 0.3 1.2 5.5 0.1 

 13.0 5.4 0.3 1.4 5.4  
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Table B5a (continued) 

Country-specific results of sensitivity analysis for subperiods 1999-2009 and 2009-2019, with and 

without robot capital as separate production factor 

Country/ 

Subperiod 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Rep. of Korea       

  1999-2009 51.6 0.0 5.4 1.8 41.4 0.0 

 51.6 0.0 5.4 1.8 41.4  

  2009-2019 26.2 -3.7 6.9 2.1 20.0 0.0 

 26.2 -3.7 6.9 2.1 20.0  

Russian Fed.       

  1999-2009 120.0 80.0 0.7 1.4 20.3 -0.5 

 120.0 68.0 6.8 1.3 21.2  

  2009-2019 33.4 12.3 0.1 1.0 10.0 6.8 

 33.4 7.7 9.1 1.3 12.1  

Singapore       

  1999-2009 64.4 11.5 5.8 3.5 34.6 0.0 

 64.4 11.5 5.8 3.5 34.6  

  2009-2019 36.6 -4.7 4.4 8.3 24.2 2.1 

 36.6 -4.7 6.1 8.8 24.2  

Slovakia       

  1999-2009 48.5 23.1 4.1 3.1 8.5 3.6 

 48.5 27.8 4.1 3.2 8.2  

  2090-2019 6.4 3.3 4.9 1.5 -5.7 2.5 

 6.4 3.8 7.0 1.6 -5.7  

Slovenia 
      

  1999-2009 24.3 -8.5 20.4 2.3 4.4 5.6 

 24.3 -7.7 22.1 2.2 8.0  

  2009-2019 17.7 12.5 2.5 1.0 0.3 0.8 

 17.7 12.5 3.2 1.2 0.3  

Spain       

  1999-2009 23.2 -25.1 40.0 3.7 13.3 0.0 

 23.2 -25.1 40.0 3.7 13.3  

  2009-2019 16.9 1.0 1.0 1.1 13.4 0.0 

 16.9 1.0 1.0 1.1 13.4  

Sweden       

  1999-2009 21.1 -21.9 46.4 2.7 3.1 0.0 

 21.1 -21.9 46.4 2.7 3.1  

  2009-2019 14.4 12.1 1.8 0.6 -0.3 0.0 

 14.4 12.1 1.8 0.6 -0.3  

Switzerland       

  1999-2009 35.4 -9.7 33.0 1.6 10.8 0.1 

 35.4 -9.7 33.2 1.7 10.7  

  2009-2019 22.7 8.9 1.1 0.3 10.9 0.2 

 22.7 8.9 1.4 0.4 10.7  
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Table B5a (continued) 

Country-specific results of sensitivity analysis for subperiods 1999-2009 and 2009-2019, with and 

without robot capital as separate production factor 

Country/ 

Subperiod 

Productivity 

Change 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Taiwan       

  1999-2009 15.8 -2.0 7.2 3.6 5.8 0.6 

 15.8 -2.0 7.7 3.7 5.8  

  2009-2019 9.9 7.0 6.3 2.0 -5.3 0.0 

 9.9 7.0 6.3 2.0 -5.3  

Turkey       

  1999-2009 61.3 -8.9 3.1 2.9 34.7 23.9 

 61.3 -10.0 6.8 3.6 62.0  

  2009-2019 40.3 -4.2 1.1 2.2 29.9 9.2 

 40.3 -3.1 4.8 2.7 34.5  

United Kingdom       

  1999-2009 14.2 -6.4 7.8 2.3 10.5 0.2 

 14.2 -7.4 9.2 2.4 10.3  

  2009-2019 12.3 2.6 1.7 0.4 5.8 1.2 

 12.3 1.1 4.8 0.6 5.5  

United States       

  1999-2009 23.5 -3.8 5.6 1.0 19.8 0.6 

 23.5 -3.8 6.2 1.0 19.8  

  2009-2019 11.1 4.0 3.9 0.3 0.8 1.7 

 11.1 4.0 5.6 0.4 0.8  
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Table B5b 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019 

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Argentina (Prod. Ch. = 40.5)      
  OHS depr., qual. ch. adj. -10.8 6.5 3.0 33.5 7.6 

  PIM 5 %, qual. ch. adj. -10.8 6.4 2.8 33.7 7.7 

  PIM 10 %, qual. ch. adj. -10.8 6.4 2.9 33.6 7.6 

  PIM 15 %, not qual. ch. adj. -10.3 6.2 2.4 32.9 8.5 

Australia (Prod. Ch. = 35.8)      

  OHS depr., qual. ch. adj. -4.3 11.9 0.4 22.6 3.1 

  PIM 5 %, qual. ch. adj. -4.8 12.1 0.4 22.1 3.8 

  PIM 10 %, qual. ch. adj. -4.4 11.9 0.4 22.9 3.0 

  PIM 15 %, not qual. ch. adj. -4.0 12.9 0.4 22.9 1.6 

Austria (Prod. Ch. = 50.2)      

  OHS depr., qual. ch. adj. -17.3 47.1 5.1 16.4 0.9 

  PIM 5 %, qual. ch. adj. -17.3 47.0 5.1 16.3 1.0 

  PIM 10 %, qual. ch. adj. -17.3 47.0 5.1 16.4 1.0 

  PIM 15 %, not qual. ch. adj. -17.3 47.7 5.2 16.2 0.6 

Belgium (Prod. Ch. = 29.7)      

  OHS depr., qual. ch. adj. -35.7 77.1 3.8 9.7 0.0 

  PIM 5 %, qual. ch. adj. -35.7 77.1 3.7 9.8 0.0 

  PIM 10 %, qual. ch. adj. -35.7 77.1 3.8 9.7 0.0 

  PIM 15 %, not qual. ch. adj. -35.7 77.1 3.8 9.7 0.0 

Brazil (Prod. Ch. = 40.7)      

  OHS depr., qual. ch. adj. -12.5 8.3 10.5 25.7 6.8 

  PIM 5 %, qual. ch. adj. -12.5 8.3 10.0 25.9 7.2 

  PIM 10 %, qual. ch. adj. -12.3 8.2 10.4 25.7 6.9 

  PIM 15 %, not qual. ch. adj. -11.8 8.4 10.7 25.2 6.3 

Canada (Prod. Ch. = 24.1)      

  OHS depr., qual. ch. adj. -17.4 9.9 3.6 22.4 7.8 

  PIM 5 %, qual. ch. adj. -17.6 10.0 3.6 21.2 9.0 

  PIM 10 %, qual. ch. adj. -17.5 10.1 3.6 22.4 7.8 

  PIM 15 %, not qual. ch. adj. -17.6 11.3 3.6 22.5 6.7 

China (Prod. Ch. = 252.2)      

  OHS depr., qual. ch. adj. -30.5 4.0 3.1 237.9 39.9 

  PIM 5 %, qual. ch. adj. -30.5 4.0 3.1 232.0 42.4 

  PIM 10 %, qual. ch. adj. -30.5 4.0 3.1 233.4 41.8 

  PIM 15 %, not qual. ch. adj. -30.5 4.1 3.1 214.2 50.4 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 
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Table B5b (continued) 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019  

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Czech Rep. (Prod. Ch. = 69.7)      
  OHS depr., qual. ch. adj. 30.5 9.5 2.0 2.6 13.5 

  PIM 5 %, qual. ch. adj. 28.2 8.3 2.1 2.6 16.6 

  PIM 10 %, qual. ch. adj. 34.0 8.2 2.0 2.9 11.5 

  PIM 15 %, not qual. ch. adj. 26.7 14.4 1.1 4.0 11.4 

Denmark (Prod. Ch. = 60.5)      

  OHS depr., qual. ch. adj. -7.1 34.5 5.6 19.7 1.6 

  PIM 5 %, qual. ch. adj. -7.1 34.5 5.6 19.6 1.6 

  PIM 10 %, qual. ch. adj. -7.1 34.6 5.6 19.7 1.4 

  PIM 15 %, not qual. ch. adj. -7.1 35.2 5.6 19.6 1.1 

Finland (Prod. Ch. = 27.0)      

  OHS depr., qual. ch. adj. -15.1 21.9 7.3 12.8 1.4 

  PIM 5 %, qual. ch. adj. -15.1 21.9 7.3 12.8 1.4 

  PIM 10 %, qual. ch. adj. -15.1 21.9 7.3 12.8 1.4 

  PIM 15 %, not qual. ch. adj. -15.1 22.9 7.4 12.6 0.6 

France (Prod. Ch. = 34.8)      

  OHS depr., qual. ch. adj. -33.7 67.3 6.7 13.4 0.4 

  PIM 5 %, qual. ch. adj. -33.7 67.3 6.7 13.4 0.4 

  PIM 10 %, qual. ch. adj. -33.7 67.3 6.7 13.4 0.4 

  PIM 15 %, not qual. ch. adj. -33.7 68.0 6.8 13.1 0.2 

Germany (Prod. Ch. = 33.8)      

  OHS depr., qual. ch. adj. -5.7 26.2 2.1 9.7 0.4 

  PIM 5 %, qual. ch. adj. -5.7 26.1 2.1 9.7 0.5 

  PIM 10 %, qual. ch. adj. -5.7 26.2 2.1 9.7 0.4 

  PIM 15 %, not qual. ch. adj. -5.7 27.0 2.2 9.4 0.0 

Greece (Prod. Ch. = 15.3)      

  OHS depr., qual. ch. adj. -53.2 12.5 14.5 3.9 84.3 

  PIM 5 %, qual. ch. adj. -51.7 10.6 14.3 2.9 83.6 

  PIM 10 %, qual. ch. adj. -52.9 11.8 13.9 3.4 85.7 

  PIM 15 %, not qual. ch. adj. -45.8 15.2 8.9 1.5 66.9 

Hungary (Prod. Ch. = 76.2)      

  OHS depr., qual. ch. adj. 2.5 5.7 4.5 28.9 20.7 

  PIM 5 %, qual. ch. adj. 2.4 5.6 4.4 28.0 21.8 

  PIM 10 %, qual. ch. adj. 2.4 5.5 4.4 27.0 22.9 

  PIM 15 %, not qual. ch. adj. 2.4 5.7 4.4 27.1 22.8 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 
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Table B5b (continued) 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019 

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

India (Prod. Ch. = 235.4)      
  OHS depr., qual. ch. adj. -12.1 2.6 6.3 111.5 65.3 

  PIM 5 %, qual. ch. adj. -12.2 2.6 6.3 103.9 71.7 

  PIM 10 %, qual. ch. adj. -12.3 2.6 6.4 101.7 73.7 

  PIM 15 %, not qual. ch. adj. -16.7 1.8 9.5 91.4 88.8 

Israel (Prod. Ch. = 9.9)      

  OHS depr., qual. ch. adj. -7.3 6.1 4.9 -2.1 8.8 

  PIM 5 %, qual. ch. adj. -8.2 5.8 5.6 -2.1 9.3 

  PIM 10 %, qual. ch. adj. -7.0 5.6 5.1 -2.2 8.8 

  PIM 15 %, not qual. ch. adj. -9.0 8.5 3.6 -2.1 9.7 

Italy (Prod. Ch. = 18.0)      

  OHS depr., qual. ch. adj. -45.3 76.9 8.5 12.3 0.1 

  PIM 5 %, qual. ch. adj. -45.3 76.9 8.4 12.3 0.1 

  PIM 10 %, qual. ch. adj. -45.3 76.9 8.5 12.3 0.1 

  PIM 15 %, not qual. ch. adj. -45.3 76.9 8.7 12.2 0.0 

Japan (Prod. Ch. = 10.9)      

  OHS depr., qual. ch. adj. -5.6 13.9 2.4 0.6 0.0 

  PIM 5 %, qual. ch. adj. -5.5 13.9 2.4 0.6 0.0 

  PIM 10 %, qual. ch. adj. -5.6 13.9 2.4 0.6 0.0 

  PIM 15 %, not qual. ch. adj. -5.6 13.9 2.4 0.6 0.0 

Malaysia (Prod. Ch. = 85.3)      

  OHS depr., qual. ch. adj. 11.1 11.5 4.2 36.6 5.0 

  PIM 5 %, qual. ch. adj. 10.9 11.2 4.2 36.7 5.4 

  PIM 10 %, qual. ch. adj. 11.1 11.0 4.3 36.7 5.4 

  PIM 15 %, not qual. ch. adj. 11.3 12.9 3.9 36.5 3.9 

Mexico (Prod. Ch. = 21.9)      

  OHS depr., qual. ch. adj. -15.8 8.8 3.5 18.3 8.6 

  PIM 5 %, qual. ch. adj. -15.7 8.8 3.4 18.3 8.6 

  PIM 10 %, qual. ch. adj. -15.7 8.8 3.5 18.3 8.6 

  PIM 15 %, not qual. ch. adj. -15.6 9.2 3.4 18.2 8.2 

Netherlands (Prd. Ch. = 34.4)      

  OHS depr., qual. ch. adj. -17.2 35.8 4.8 9.3 4.3 

  PIM 5 %, qual. ch. adj. -17.2 35.6 4.8 8.2 5.5 

  PIM 10 %, qual. ch. adj. -17.2 35.9 4.8 9.4 4.2 

  PIM 15 %, not qual. ch. adj. -17.2 36.9 4.9 11.4 1.4 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 
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Table B5b (continued) 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019 

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Norway (Prod. Ch. = 66.0)      
  OHS depr., qual. ch. adj. -14.6 37.6 5.7 16.1 15.1 

  PIM 5 %, qual. ch. adj. -14.6 38.1 5.7 16.9 14.0 

  PIM 10 %, qual. ch. adj. -14.6 38.0 5.6 17.1 13.8 

  PIM 15 %, not qual. ch. adj. -14.6 39.2 5.7 24.6 6.0 

Poland (Prod. Ch. = 104.1)      

  OHS depr., qual. ch. adj. 0.0 10.2 2.4 69.6 6.7 

  PIM 5 %, qual. ch. adj. 0.0 10.4 2.3 69.7 6.5 

  PIM 10 %, qual. ch. adj. 0.0 10.3 2.3 69.6 6.6 

  PIM 15 %, not qual. ch. adj. 0.0 10.2 2.2 69.7 6.7 

Portugal (Prod. Ch. = 38.6)      

  OHS depr., qual. ch. adj. -30.3 42.6 10.2 8.4 16.7 

  PIM 5 %, qual. ch. adj. -31.2 38.9 10.4 8.5 21.1 

  PIM 10 %, qual. ch. adj. -30.5 41.8 10.1 8.6 17.6 

  PIM 15 %, not qual. ch. adj. -30.4 52.7 7.8 12.9 7.1 

Rep. Korea (Prd. Ch. = 91.3)      

  OHS depr., qual. ch. adj. -3.6 12.9 6.8 61.8 1.8 

  PIM 5 %, qual. ch. adj. -3.6 12.7 6.8 61.8 1.9 

  PIM 10 %, qual. ch. adj. -3.6 12.7 6.8 61.9 1.9 

  PIM 15 %, not qual. ch. adj. -3.6 14.4 7.2 61.3 0.4 

Russia (Prod. Ch. = 193.5)      

  OHS depr., qual. ch. adj. 102.2 2.0 2.6 33.3 4.0 

  PIM 5 %, qual. ch. adj. 100.6 4.4 2.4 34.7 1.6 

  PIM 10 %, qual. ch. adj. 102.2 2.8 2.6 34.7 2.2 

  PIM 15 %, not qual. ch. adj. 105.9 3.3 2.9 33.9 0.1 

Singapore (Prod. Ch. = 124.5)      

  OHS depr., qual. ch. adj. 6.3 11.6 27.4 47.1 1.1 

  PIM 5 %, qual. ch. adj. 6.2 11.5 27.5 47.1 1.1 

  PIM 10 %, qual. ch. adj. 6.3 11.5 27.4 47.1 1.1 

  PIM 15 %, not qual. ch. adj. 6.3 11.9 28.1 47.3 0.0 

Slovakia (Prd. Ch. = 58.0)      

  OHS depr., qual. ch. adj. 27.7 8.2 3.7 2.6 7.4 

  PIM 5 %, qual. ch. adj. 27.6 8.3 3.7 2.6 7.4 

  PIM 10 %, qual. ch. adj. 27.4 8.2 3.7 2.6 7.7 

  PIM 15 %, not qual. ch. adj. 27.2 9.5 3.7 2.6 6.6 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 
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Table B5b (continued) 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019 

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Slovenia (Prod. Ch. = 46.3)      
  OHS depr., qual. ch. adj. 3.8 19.7 5.6 6.6 4.6 

  PIM 5 %, qual. ch. adj. 2.6 18.9 6.5 4.1 8.1 

  PIM 10 %, qual. ch. adj. 2.9 19.6 5.8 4.5 7.5 

  PIM 15 %, not qual. ch. adj. 3.8 20.6 5.6 7.4 3.0 

Spain (Prod. Ch. = 44.1)      

  OHS depr., qual. ch. adj. -24.3 46.2 8.0 19.5 0.9 

  PIM 5 %, qual. ch. adj. -24.3 46.2 8.0 19.5 1.0 

  PIM 10 %, qual. ch. adj. -24.3 46.3 7.9 19.5 0.9 

  PIM 15 %, not qual. ch. adj. -24.3 47.1 8.0 19.2 0.5 

Sweden (Prod. Ch. = 38.6)      

  OHS depr., qual. ch. adj. -12.4 46.5 4.6 2.7 0.5 

  PIM 5 %, qual. ch. adj. -12.4 46.5 4.6 2.7 0.5 

  PIM 10 %, qual. ch. adj. -12.4 46.5 4.6 2.7 0.5 

  PIM 15 %, not qual. ch. adj. -12.4 47.0 4.9 2.6 0.0 

Switzerland (Prd. Ch. = 66.1)      

  OHS depr., qual. ch. adj. -1.7 40.5 3.0 15.7 0.9 

  PIM 5 %, qual. ch. adj. -1.7 40.5 3.0 15.7 1.0 

  PIM 10 %, qual. ch. adj. -1.7 40.5 3.0 15.7 1.0 

  PIM 15 %, not qual. ch. adj. -1.7 41.3 3.0 15.5 0.5 

Taiwan (Prod. Ch. = 27.3)      

  OHS depr., qual. ch. adj. 4.9 9.9 6.9 0.7 2.5 

  PIM 5 %, qual. ch. adj. 4.9 9.9 6.9 0.7 2.6 

  PIM 10 %, qual. ch. adj. 4.9 9.9 6.9 0.7 2.6 

  PIM 15 %, not qual. ch. adj. 4.9 10.6 6.9 0.7 1.9 

Turkey (Prod. Ch. = 126.3)      

  OHS depr., qual. ch. adj. -12.7 10.4 16.5 46.3 37.7 

  PIM 5 %, qual. ch. adj. -12.7 10.3 16.5 46.4 37.7 

  PIM 10 %, qual. ch. adj. -12.7 10.4 16.6 47.0 37.1 

  PIM 15 %, not qual. ch. adj. -12.5 10.3 16.5 47.7 36.3 

U. Kingdom (Prd. Ch. = 28.3)      

  OHS depr., qual. ch. adj. -4.1 10.9 4.9 13.1 1.7 

  PIM 5 %, qual. ch. adj. -4.3 11.1 4.9 13.1 1.8 

  PIM 10 %, qual. ch. adj. -4.1 11.0 4.9 13.2 1.6 

  PIM 15 %, not qual. ch. adj. -3.6 11.4 5.1 13.1 0.6 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 
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Table B5b (continued) 

Country-specific results of sensitivity analysis for various measures of robot stocks, period 1999-2019 

Country (Prod. Ch. in %)/ 

Robot Capital Measure 

(EFF-1) × 

100 

(TECH-1) × 

100 

(HACC-1) × 

100 

(KACC-1) × 

100 

(RKACC-

1) × 100 

Un. States (Prd. Ch. = 37.2)      

  OHS depr., qual. ch. adj. 0.0 9.8 1.6 19.9 2.6 

  PIM 5 %, qual. ch. adj. 0.0 9.8 1.6 19.9 2.6 

  PIM 10 %, qual. ch. adj. 0.0 9.8 1.6 19.9 2.6 

  PIM 15 %, not qual. ch. adj. 0.0 10.5 1.6 19.8 2.1 

Abbreviations: Prod. Ch.: Productivity change; OHS depr.: one-hoss-shay depreciation; qual. ch. adj.: quality 

change adjusted; PIM 5 % (resp., 10 %, 15 %): permanent inventory method with δ=5 % (resp., 10 %, 15 %). 

 


