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Abstract

Our chapter provides a brief introduction to the stochastic frontier paradigm –

one of the most powerful techniques for performance analysis developed over the last

few decades to address various research questions for many contexts with empirical

applications in a wide variety of economic sectors such as banking, healthcare, agri-

culture, and so on. We also document the estimation routines used to implement

the classical models as well as the recent developments in this research area for

practitioners, especially those who are willing to use Stata, but also with tips on

sources for R and Matlab users.
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1 Introduction

In this chapter, we provide practitioners, who are interested in analysing the performance

of production units, with a brief introduction to the stochastic frontier paradigm – one

of the most powerful techniques for performance analysis developed in the last century.1

Stochastic frontier analysis employs econometric models to estimate production frontiers

and technical (in)efficiency with respect to these frontiers. Since its first introduction by

Aigner et al. (1977) and Meeusen and van den Broeck (1977), stochastic frontier analysis

has been applied to study the productivity and efficiency of production units in various

economic sectors, such as banking (e.g.,Ferrier and Lovell (1990); Adams et al. (1999);

Kumbhakar and Tsionas (2005); Malikov et al. (2016)), healthcare (e.g., Zuckerman et al.

(1994); Rosko (2001); Greene (2004); Mutter et al. (2013); Comans et al. (2020)), agricul-

ture (e.g., Battese and Coelli (1995); Battese and Broca (1997); Kumbhakar and Tsionas

(2008)), to mention a few. Moreover, the methodology is also used to undertake cross-

country studies on various important aspects of society such as the healthcare system

(Greene, 2004) and taxation (Fenochietto and Pessino, 2013).

Our chapter also documents the estimation routines used to implement the classical

models as well as the recent developments in this research area for practitioners, especially

those who are willing to use Stata, but also with tips on where to find analogous programs

for R and Matlab users.2 Interested readers can find more comprehensive overviews in

Sickles and Zelenyuk (2019, Chap. 11-16), Kumbhakar et al. (2021a) and Kumbhakar

et al. (2021b).

The structure of this chapter is as follows. We start our discussion with the basic

stochastic frontier model. We then extend our discussion to various generalisations of the

stochastic frontier paradigm, including stochastic panel data models, stochastic frontier

models with determinants of inefficiency, also referred to in the literature as “environmen-

tal factors”, and the semi-parametric stochastic frontier models. To provide readers with

an accessible toolkit to implement these methods, we also document available command-

1Another powerful technique for performance analysis is data envelopment analysis – the technique

based on the mathematical linear programming method proposed by Farrell (1957) and popularised by

Charnes et al. (1978).
2On this aspect, our chapter complements earlier surveys on empirical frontier application and pro-

ductivity and efficiency analysis software, e.g., Daraio et al., 2019 and Daraio et al., 2020. Besides, the

chapter also complements the previous contributions of Belotti et al. (2013) and Kumbhakar et al. (2015),

who focused only on stochastic frontier analysis using Stata, by providing the sources on analogous im-

plementations in Matlab and R. Moreover, we also include the discussion about the semi-parametric

stochastic frontier models with ready-to-use Stata codes to implement the model proposed by Simar

et al. (2017), which to the best of our knowledge have not been documented elsewhere before.
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s/packages in popular statistical softwares. We focus on the implementation via Stata,

and also provide brief comments on the sources on analogous implementations in Matlab

and R. Besides, we also provide an empirical illustration for the methods discussed in this

chapter.

2 Basic Stochastic Frontier Models

The stochastic frontier paradigm can be viewed as a generalization of the classical pro-

duction function approach, where the optimal allocation in production is a testable re-

striction rather than a prior assumption usually assumed by the neoclassical production

theory (Sickles and Zelenyuk, 2019).

The distinctive feature of the stochastic frontier paradigm (compared to the canonical

average production model paradigm) is its non-symmetric two-component error, com-

posed of a regular idiosyncratic disturbance and an additional one-sided non-negative

error component.3 The former accounts for factors such as measurement error, misspecifi-

cation, and the randomness of the production process, whereas the latter aims to represent

the technical inefficiency that reduces the actual output from its maximum feasible level.4

Assumptions in the canonical model used in stochastic frontier analysis on the conditional

independence of both error terms and the regressors as well as their independence from

each other have been lifted over the years in a series of refinements of the basic model.

We will discuss these in turn later in our chapter.

2.1 Aigner et al. (1977) Model

The canonical model of the stochastic frontier paradigm was proposed independently by

Aigner et al. (1977) (hereafter ALS) and Meeusen and van den Broeck (1977). The ALS

3In the panel data context, which we will discuss in the next sections, the composed error can include

four components.
4In this chapter, our discussion will follow the traditional exposition based on the production function.

Similar exposition (with some adaptations) applies to other characterizations of the production side, such

as cost function and revenue function. Meanwhile, more elaboration is needed if one is interested in

measuring profit efficiency (see Färe et al. (2019), Sickles and Zelenyuk (2019, Chapter 2) and references

therein).
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model is formulated as 5

ln yi = ln f (xi|β) + εi, i = 1, . . . , n,

εi = vi − ui,

vi ∼iid N
(
0, σ2

v

)
,

ui ∼iid N+
(
0, σ2

u

)
,

(1)

where yi ∈ <1
+ is the output, xi ∈ <p+ is a vector of p inputs and β is a vector of the

parameters corresponding to xi.
6 The error term εi is composed of a normally distributed

disturbance, vi, representing the measurement and specification error, and a positive dis-

turbance ui (following the half-normal distribution), representing technical inefficiency.7

Furthermore, vi and ui are assumed to be statistically independent from each other and

from xi. With the distribution assumptions on ui and vi, the likelihood function for

the model is constructed and the model is then estimated using the maximum likelihood

estimator.

Once the parameters of the model have been estimated, one can obtain the expected

level of technical inefficiency by estimating

E [u] =
√

2/πσu, (2)

and the expected level of efficiency by using the following approximation8

E [exp (−u)] ≈ 1− E [u] . (3)

If one is interested in the estimates of individual (in)efficiency of a specific production

unit, more elaboration is needed. The most popular approach in the literature is to follow

5The formulation here is a convenient representation of a production relationship, where actual output

is decomposed into the maximum output (with noise) and inefficiency, i.e., yi = f (xi|β) exp (εi) =

f (xi|β) exp (vi) exp (−ui). After log-transformation, we have a linear relationship as shown in (1).
6Multiple outputs also can be considered. For example, this can be done by employing a distance

function instead of the production function or by looking at the estimation of the cost frontier or by

converting outputs into polar coordinates (e.g., see Simar and Zelenyuk (2011)). One can also use dimen-

sion reduction techniques to reduce the dimension outputs or inputs into smaller dimensions, e.g., via

Principle Component Analysis, or using economic or price-based aggregation (e.g., see related discussion

in Zelenyuk (2020) and an application in Nguyen and Zelenyuk (2021)). The latter approach can be

especially useful in the case of very large dimensions (sometimes called ‘big wide data’ cases), e.g., as is

done for measuring the total output of countries (e.g., GDP), industries or firms (total revenue) or for

some inputs (e.g. capital). Due to space limitation we will focus here on the single output case, as was

also considered in ALS and many other studies.
7Other distributional assumptions such as exponential, truncated normal, gamma, etc., can be used

for the inefficiency term (e.g., see Meeusen and van den Broeck, 1977; Greene, 1980a,b; Stevenson, 1980;

Greene, 1990; Almanidis and Sickles, 2012; Almanidis et al., 2014).

8The exact expression of the expected level of efficiency is given by E [exp (−u)] = 2Φ (−σu) exp

(
σ2
u

2

)
.
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Jondrow et al. (1982) (hereafter JLMS), where the inefficiency of a production unit can

be estimated or predicted using the expected value of ui conditional on the realisation of

the composed error of the model, i.e., E (ui|εi),9 given by

E (ui|εi) =
σ∗φ

(
µ∗i
σ∗

)
Φ
(
µ∗i
σ∗

) + µ∗i, (4)

where

µ∗i =
−σ2

uεi
σ2
v + σ2

u

, (5)

and

σ2
∗ =

σ2
vσ

2
u

σ2
v + σ2

u

, (6)

while φ (·) and Φ (·) are pdf and cdf of the standard normal distribution, respectively.10 It

is worth noting that while being originally developed for ALS, the JLMS-type procedure

can be extended to predict (in)efficiency of a specific firm in the other models estimated

by the maximum likelihood estimator (see more discussion in Kumbhakar, 1987).

2.2 Implementation of ALS Model

There are several options to estimate the basic stochastic frontier model in Stata. One

can use the official Stata command frontier or utilise the command sfcross written by

Belotti et al. (2013)11 or even set up the likelihood function using the sfmodel command

then estimating the model using the official Stata routine for the maximum likelihood,

ml max, as described in the handbook of Kumbhakar et al. (2015).12 These commands

generate equivalent results for the basic stochastic frontier models and differ only in the

formatting and listing of results and the options available for the different treatments of

9It is worth noting here that although this estimator is unbiased, it is an inconsistent estimator of

individual inefficiency (see more discussion in Jondrow et al., 1982).
10One also can estimate the efficiency of a production unit by using the relationship E [exp (−ui) |εi] ≈

1−E [ui|εi] or utilising the exact expression E [exp (−ui) |εi] = exp
(
−µ∗i + 1

2σ
2
∗
) Φ(µ∗iσ∗ −σ∗)

Φ(µ∗iσ∗ )
(Battese and

Coelli, 1988).
11The sfcross command (and the sfpanel command that we will discuss later for the panel

data context) can be installed by executing the following command lines in Stata: net install

sfcross, all from (http://www.econometrics.it/stata) and net install sfpanel, all from

(http://www.econometrics.it/stata).
12The sfmodel and other user-written commands provided in the handbook of Kumb-

hakar et al. (2015) can be installed in Stata by executing the following command lines: net

install sfbook install, from (https://sites.google.com/site/sfbook2014/home/install/)

replace and sfbook install, see more details in Kumbhakar et al. (2015) and its website,

https://sites.google.com/site/sfbook2014/.
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Table 1: Illustration for implementation of the Aigner et al. (1977) model

************************************************************************

*** Illustration for implementation of the Aigner et al. (1977) model **

**************************** Partial Stata Codes *************************

************************************************************************

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the standard Stata commands */

frontier $y $xlist , distribution(hnormal)

predict ineff_ALS_1 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_ALS_1 , te /* Predict efficiency , i.e., E(exp(-u)|e) */

/* Implementation using the commands from Belotti et al. (2013) */

sfcross $y $xlist , distribution(hnormal)

predict ineff_ALS_2 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_ALS_2 , bc /* Predict efficiency , i.e., E(exp(-u)|e) */

/* Implementation using the commands from Kumbhakar et al. (2015) */

sfmodel $y , prod frontier($xlist) distribution(h)

ml max

sf_predict , jlms(ineff_ALS_3) /* Predict inefficiency , i.e., E(u|e) */

sf_predict , bc(eff_ALS_3) /* Predict efficiency , i.e., E(exp(-u)|e) */ �

error distributions for the one-sided efficiency term and the inclusion of environmental

factors.

As we progress in our chapter we consider a richer set of generalisations of the canon-

ical stochastic frontier paradigm. Also, user-written commands provide us with more

flexibility to estimate models that are not available with the current official Stata com-

mands. Moreover, the user-written commands by Belotti et al. (2013) and Kumbhakar

et al. (2015) also equip us with options to provide and refine the initial values for the

maximum likelihood estimation, which can be very useful when dealing with complex

likelihood functions.

After estimating the models, the estimates of technical inefficiency and efficiency can

be obtained by using the postestimation routine predict (for the models estimated in the

Stata version 16 by the official Stata command and the command written by Belotti et al.

(2013)) or sf predict (for the models estimated by the command written by Kumbhakar

et al. (2015)). As an illustration, a snippet of Stata codes for implementing the ALS

model is provided in Table 1.
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R software also has several packages to implement the estimation of the basic stochastic

frontier model. For example, one can use the package frontier written by Coelli and

Henningsen (2020)13 or utilise the function sfa in the package Benchmarking written by

Bogetoft and Otto (2019).

In order to estimate the basic stochastic frontier model, Matlab users need to set up

the likelihood function and then utilise the optimisation routines, such as fminunc to

optimise the likelihood function. Sickles and Zelenyuk (2019) provide a suite of Matlab

codes to estimate a variety of stochastic frontier models on the website that accompanies

their book.1415 Although they do not include the ALS model, one can easily adapt their

codes to obtain the estimates for this basic stochastic frontier model.

3 Early generation of stochastic panel data models

The basic stochastic frontier model discussed in the previous section is formulated in

the cross-sectional setting and suffers from a number of drawbacks. As discussed in

Schmidt and Sickles (1984), the three main disadvantages of the basic cross-sectional

stochastic frontier model are: (i) there does not exist a consistent estimator of individual

efficiency, (ii) the parametric distributional assumptions are usually required for the two

error components (inefficiency and noise) to estimate the model and to predict the overall

and individual (in)efficiency, and (iii) the assumption that inefficiency is independent of

regressors is usually not plausible.

Over the past four decades, substantial efforts have been made to address these draw-

backs of the cross-sectional stochastic frontier model. Among those, particular interest

hinges on exploiting the advantages of panel data structure. Schmidt and Sickles (1984)

were among the first who provided a general framework to extend the cross-sectional

stochastic frontier model to the panel data setting, which also encompasses the Pitt and

Lee (1981) full parametric random effect model.

13The package frontier uses the Fortran source codes of Frontier 4.1 originally developed by Tim

Coelli (see more details in the manual of the package available at https://cran.r-project.org/web/

packages/frontier/frontier.pdf).
14The website can be found at https://sites.google.com/site/productivityefficiency/home.
15The Matlab codes accompanying Sickles and Zelenyuk (2019) are also converted to R codes by

Sickles et al. (2020), which can be accessed via the link provided on the book website or directly via

https://sites.google.com/site/productivityinr.
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3.1 Schmidt and Sickles (1984) Model

The model in Schmidt and Sickles (1984) can be formulated as follow

yit = β0 + x′itβ + vit − ui, i = 1, . . . , n, t = 1, . . . , T, (7)

where yit ∈ <1
+ is the output, xit ∈ <p+ is a vector of p inputs of production unit i in

time t. vit is the regular disturbance, while the unobserved individual heterogeneity, ui,

represents technical inefficiency. Model (7) can be rewritten as

yit = β∗0 + x′itβ + vit − u∗i = ci + x′itβ + vit, (8)

where β∗0 = β0 − E (ui), u
∗
i = ui − E (ui), E (ui) ≥ 0, ci = β∗0 − u∗i = β0 − ui.

Model (8) turns out to be a usual panel data model and can be estimated using the

standard estimation methods in the panel data literature, such as the within estimator

(i.e., in the fixed effect framework), the generalised least-square estimator (i.e., in the ran-

dom effect framework), and the Hausman-Taylor estimator. After estimating the model,

one can obtain the estimate ĉi of ci and follow Schmidt and Sickles (1984) to construct a

consistent estimator of technical inefficiency

ûi = max (ĉi)− ĉi ≥ 0, i = 1, . . . , n. (9)

The estimated inefficiency in (9) is measured with respect to the best practice production

unit in the sample, which is implicitly assumed to be 100% efficient.

3.2 Implementation of Schmidt and Sickles (1984) Model

One can estimate the Schmidt and Sickles (1984) model using standard routines in Stata.

Specifically, the official Stata command xtreg can be utilised to estimate the standard

panel data model in (8) and the postestimation command predict can be used to obtain

the estimate ĉi of ci. It is then straightforward to code formula (9) into Stata to get

the estimates of technical inefficiency. Alternatively, one can use the command sfpanel

written by Belotti et al. (2013) with the option model(fe) or model(regls) to estimate

Schmidt and Sickles (1984) model in a fixed or random effects framework, respectively.

As an illustration, a snippet of Stata codes for implementing the Schmidt and Sickles

(1984) model (in the fixed effects framework) is provided in Table 2.

It is worth noting that model (8) and the individual inefficiency in (9) are estimated

without any parametric assumptions on the distributions of composed errors. Alterna-

tively, one can impose parametric assumptions on the distributions of the error compo-

nents in model(7), e.g., a half-normal distribution for ui and a normal distribution for

8



Table 2: Illustration for implementation of the Schmidt and Sickles (1984) model in the

fixed effects framework

************************************************************************

********************** Illustration for implementation ******************

******************* of the Schmidt and Sickles (1984) model *************

**************************** Partial Stata Codes *************************

************************************************************************

/* The illustration here is for the fixed effects framework */

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the standard Stata commands */

xtreg $y $xlist , fe /* Need to declare data to be panel before using

xtreg command */

predict ci , u /* Obtain the estimate of ci */

quietly summarize ci

gen ineff_SS_1 = r(max) - ci /* Predict inefficiency */

gen eff_SS_1 = exp(-ineff_SS_1) /* Predict efficiency */

/* Implementation using the commands from Belotti et al. (2013) */

sfpanel $y $xlist , model(fe)

predict ineff_SS_2 , u /* Predict inefficiency */

gen eff_SS_2 = exp(-ineff_SS_2) /* Predict efficiency */ �
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Table 3: Illustration for implementation of the Pitt and Lee (1981) model in the random

effects framework

************************************************************************

*** Illustration for implementation of the Pitt and Lee (1981) model ***

**************************** Partial Stata Codes *************************

************************************************************************

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the standard Stata commands */

predict ineff_PL_1 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_PL_1 , te /* Predict inefficiency , i.e., E(exp(-u)|e) */

/* Implementation using the commands from Belotti et al. (2013) */

sfpanel $y $xlist , model(pl81)

predict ineff_PL_2 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_PL_2 , bc /* Predict inefficiency , i.e., E(exp(-u)|e) */ �

vit as discussed in Pitt and Lee (1981) and Schmidt and Sickles (1984). The model then

can be estimated using the maximum likelihood estimator and the individual technical

efficiency can be obtained by employing the JLMS procedure (extended to the panel data

setting by Kumbhakar, 1987). This model is estimated in Stata using the user-written

command sfpanel from Belotti et al. (2013) with the option model(pl81). Alternatively,

if one assumes that ui follows a truncated normal distribution, i.e., ui ∼ N+ (µ, σ2
u), then

the official Stata command xtfrontier with the option ti can be utilised. A snippet of

Stata codes for implementing the Pitt and Lee (1981) model is provided in Table 3.

Estimation of the Schmidt and Sickles (1984) model also can be implemented in Matlab

and R using the codes provided by Sickles and Zelenyuk (2019) and Sickles et al. (2020)

(see the download links in footnote 14 and footnote 15).

3.3 Cornwell et al. (1990) Model

The technical inefficiency estimated within the Schmidt and Sickles (1984) framework is

time-invariant, which may be an unrealistic restriction in many applied settings, especially

in a long panel. To allow for time varying inefficiency in the Schmidt and Sickles (1984)

framework, one can follow the suggestion in Cornwell et al. (1990) to replace ci by, e.g.,

cit, where cit is a quadratic function of time trend t with the parameters (coefficients)
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being firm-specific, specifically

cit = θ0i + θ1it+ θ2it
2. (10)

The parameters in (10) can be estimated by regressing the residual from the model (7) for

production unit i on a constant, time, and time-squared (see more discussion in Cornwell

et al., 1990). The fitted value from this model provides us with a consistent estimate (for

large N) of cit, denoted as ĉit. The individual technical inefficiency of production unit

i at time t then can be estimated using an analogous procedure to Schmidt and Sickles

(1984), specifically16

ûit = ĉt − ĉit, (11)

where

ĉt = max
j

(ĉjt) , t = 1, . . . , T. (12)

3.4 Implementation of Cornwell et al. (1990) Model

Estimation of the Cornwell et al. (1990) model can be implemented using standard Stata

routines in a set of procedures similar to those we discussed for the Schmidt and Sickles

(1984) model. Alternatively, one can utilise the user-written command sfpanel from

Belotti et al. (2013) with the option model(fecss). A snippet of codes for implementing

the Cornwell et al. (1990) model using sfpanel command is provided in Table 4.

Being similar to the Schmidt and Sickles (1984) model, one can estimate the Cornwell

et al. (1990) model in Matlab and R using the codes provided by Sickles and Zelenyuk

(2019) and Sickles et al. (2020) (see the download links in footnote 14 and footnote 15).

3.5 Kumbhakar (1990) and Battese and Coelli (1992) Models

If one is willing to impose distributional assumptions on the inefficiency component (as

well as on the random disturbance term), the maximum likelihood estimation can be

utilised to estimate time-varying efficiency models. Kumbhakar (1990) and Battese and

Coelli (1992) appear to be the most popular models of this type. In the Kumbhakar

(1990) model, time-varying inefficiency is modelled as

uit =
(
1 + exp

(
at+ bt2

))−1
τi,

τi ∼iid N+
(
0, σ2

τ

)
,

(13)

16Cornwell et al. (1990) outlined estimators for a general model in which any set of regressors could be

drivers of efficiency change, if efficiency was interpreted as firm-specific heterogeneity. These regressors

could be time varying. Thus the Cornwell et al. (1990) model was the first study about which we are

aware to address the issue of environmental variables influencing efficiency levels.
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Table 4: Illustration for implementation of the Cornwell et al. (1990) model

************************************************************************

* Illustration for implementation of the Cornwell et al. (1990) model **

**************************** Partial Stata Codes *************************

************************************************************************

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the commands from Belotti et al. (2013) */

sfpanel $y $xlist , model(fecss)

predict ineff_CSS , u /* Predict inefficiency */

gen eff_CSS = exp(-ineff_CSS) /* Predict efficiency */ �

while in Battese and Coelli (1992), time-varying inefficiency is specified as

uit = {exp [−η (t− T )]} τi,

τi ∼iid N+
(
µ, σ2

τ

)
,

(14)

where a,b, and η are parameters to be estimated, and in both models, the random distur-

bance follows a normal distribution, i.e, vit ∼iid N (0, σ2
v).

Being similar to the Cornwell et al. (1990) model, the Kumbhakar (1990) and Battese

and Coelli (1992) models extend the Pitt and Lee (1981) model by allowing the mean of

inefficiency to vary over time, but they are more parsimonious in the sense that tempo-

ral patterns only depend or one or two parameters. The Cornwell et al. (1990) model,

however, has an advantage in that it allows temporal patterns to vary across production

units. Moreover, as discussed above, estimation of the Cornwell et al. (1990) model does

not require parametric assumptions for inefficiency term.

3.6 Implementation of Kumbhakar (1990) and Battese and Coelli

(1992) Models

The Battese and Coelli (1992) model, also known as a “time decay” model, can be esti-

mated using Stata commands in its version 16 platform as well as by using user-written

commands. Specifically, the estimation can be implemented by using the xtfrontier

command with the option tvd or the command sfpanel from Belotti et al. (2013) with the

option model(bc92). The official Stata command xtfrontier cannot carry out estima-

tion of the Kumbhakar (1990) model, which is available using the option model(kumb90)

with the command sfpanel from Belotti et al. (2013). A snippet of Stata codes for
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Table 5: Illustration for implementation of the Kumbhakar (1990) and Battese and Coelli

(1992) models

************************************************************************

******** Illustration for implementation of the Kumbhakar (1990) ******

************** and Battese and Coelli (1992) models ********************

************************ Partial Stata Codes ***************************

************************************************************************

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the standard Stata commands */

xtfrontier $y $xlist , tvd /* the Battese and Coelli (1992) model */

predict ineff_BC_1 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_BC_1 , te /* Predict efficiency , i.e., E(exp(-u)|e) */

/* Implementation using the commands from Belotti et al. (2013) */

sfpanel $y $xlist , model(bc92) /* the Battese and Coelli (1992) model */

predict ineff_BC_2 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_BC_2 , bc /* Predict efficiency , i.e., E(exp(-u)|e) */

sfpanel $y $xlist , model(kumb90) /* the Kumbhakar (1990) model */

predict ineff_K , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_K , bc /* Predict efficiency , i.e., E(exp(-u)|e) */ �

implementing Kumbhakar (1990) and Battese and Coelli (1992) models is provided in

Table 5.

The estimation of the Battese and Coelli (1992) model can be implemented in R

software by using the package frontier written by Coelli and Henningsen (2020). Alter-

natively, R users and Matlab users can utilise the codes prepared by Sickles and Zelenyuk

(2019) and Sickles et al. (2020) (see the download links in footnote 14 and footnote 15).

4 Recent Advances of Stochastic Panel Data Models

The stochastic panel data models discussed so far have a major drawback in that techni-

cal inefficiency is not distinguishable from the unobserved individual heterogeneity, and

thus technical inefficiency confounds with all time-invariant unobserved individual effects.

Various approaches have been proposed in the literature to mitigate this (and other) is-

sues. Here, we will focus on a few, namely Greene (2005a,b), Chen et al. (2014), Colombi
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et al. (2014), Kumbhakar et al. (2014) and Belotti and Ilardi (2018).

4.1 Greene (2005a,b) Models

Greene (2005a,b) proposed a stochastic panel data model in which unobserved individual

heterogeneity separates from (transitory) technical efficiency. The model is formulated as

yit = ci + x′itβ + εit,

εit = vit − uit,
(15)

where vit as before is a regular disturbance, while uit ≥ 0 is the source of inefficiency.

Estimation of the model in (15) is challenging, especially in the fixed effects framework.

The two main challenges are: (i) the estimation of parameters may be inconsistent due to

the incidental parameters problem, and (ii) there does not exist a closed-form expression

of the likelihood function of the within or first-difference transformation of the composed

error if one follows standard procedures. Greene (2005a) proposed to use the maximum

likelihood dummy variable estimator to estimate the model in the fixed effects framework

and provided simulation evidence showing that the incidental parameters problem is not

serious for relatively large T .17

4.2 Implementation of Greene (2005a,b) Models

One can implement estimation of the Greene (2005a,b) models in Stata by using the user-

written command sfpanel from Belotti et al. (2013) with the option model(tfe) in the

fixed effects framework and with the option model(tre) in the random effects framework.

Recently, Chen et al. (2014) derived a closed-form expression for the likelihood function

of the within and first difference transformation of the model by exploiting the properties

of the closed-skew normal distribution class. The model in (15) then can be estimated

consistently in the fixed effects framework using the marginal maximum likelihood estima-

tor. Belotti and Ilardi (2018) further extend the work of Chen et al. (2014) by considering

the simulated marginal maximum likelihood estimator.

Chen et al. (2014) and Belotti and Ilardi (2018) estimators can be implemented in

Stata using the command sftfe written by Belotti and Ilardi (2018) with the options

estimator(within) and estimator(mmsle), respectively.18 A snippet of Stata codes for

implementing the Greene (2005a,b) models is provided in Table 6.

17Greene (2005a) also utilised the simulated maximum likelihood estimator to estimate the model in

the random effect frameworks
18The sftfe command can be installed by executing the following command line in Stata: net install

sftfe, all from (http://www.econometrics.it/stata).
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Table 6: Illustration for implementation of the Greene (2005a,b) models

************************************************************************

*** Illustration for implementation of the Green (2005a ,b) models ***

**************************** Partial Stata Codes *************************

************************************************************************

/* The illustration here is for the fixed effect framework */

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the maximum likelihood dummy variable estimator

(the commands from Belotti et al. (2013)) */

sfpanel $y $xlist , distribution(hnormal) model(tfe)

predict ineff_G_1 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_G_1 , bc /* Predict efficiency , i.e., E(exp(-u)|e) */

/* Implementation using the marginal maximum likelihood estimator (the

commands from Belotti and Ilardi (2018)) */

sftfe $y $xlist , distribution(hnormal) estimator(within)

predict ineff_G_2 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_G_2 , jlms /* Predict efficiency */

/* Implementation using the simulated marginal maximum likelihood

estimator (the commands from Belotti and Ilardi (2018)) */

sftfe $y $xlist , distribution(hnormal) estimator(mmsle)

predict ineff_G_3 , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_G_3 , jlms /* Predict efficiency */ �
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To the best of our knowledge, routines to estimate the Greene (2005a,b) model are

not yet available in R and Matlab in a public domain.

4.3 Colombi et al. (2014) and Kumbhakar et al. (2014) Models

The model specified in (15), although distinguishing between unobserved individual het-

erogeneity and technical inefficiency, only considers transitory inefficiency. Kumbhakar

et al. (2014) and Colombi et al. (2014) further extend the model by decomposing the

inefficiency into transitory and persistent components whose formulation is

yit = β0 + x′itβ + ci − ηi + vit − uit,

ci ∼iid N
(
0, σ2

c

)
,

ηi ∼iid N+
(
0, σ2

η

)
,

vit ∼iid N
(
0, σ2

v

)
,

uit ∼iid N+
(
0, σ2

u

)
,

(16)

where ci represents the unobserved individual heterogeneity, ηi represents the persistent

inefficiency, uit represents transitory inefficiency, and vit is the regular disturbance. The

model in (16) can be estimated using a single-stage maximum likelihood method (Colombi

et al., 2014) or a multi-step procedure (Kumbhakar et al., 2014). The multi-step procedure

although being inefficient relative to the single-stage maximum likelihood estimation, it

is simpler and easier to implement. For the multi-step procedure, the model in (16) can

be rewritten as

yit = β∗0 + x′itβ + αi + εit, (17)

where

β∗0 = β0 − E [ηi]− E [uit] , (18)

αi = ci − ηi + E (ηi) , (19)

εit = vit − uit + E [uit] . (20)

The model in (17) turns out to be a standard panel data model and can be estimated

by the usual panel data estimation methods. After estimating (17), one can obtain the

predicted values of αi and εit, α̂i and ε̂it, and then the persistent and transitory inefficiency

components are estimated by applying standard stochastic frontier techniques to (19) and

(20) with αi and εit replaced by α̂i and ε̂it.
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Table 7: Illustration for implementation of the Kumbhakar et al. (2014) model

************************************************************************

*Illustration for implementation of the Kumbhakar et al. (2014) models *

**************************** Partial Stata Codes *************************

************************************************************************

/* The illustration here is for the random effect framework */

/* Note that output , inputs are in log forms and stored in global Stata

variables $y , $xlist , respectively */

/* Implementation using the standard Stata commands */

xtreg $y $xlist , re

predict alp , u /* Obtain estimates of alpha */

predict esl , e /* Obtain estimates of the composed error */

/* Estimate equation (19) using the basic stochastic frontier model to

obtain persistent (in)efficiency */

frontier alp , distribution(hnormal)

predict ineff_pers , u /* Predict persistent inefficiency , E(u|e) */

predict eff_pers , te /* Predict persistent efficiency , E(exp(-u)|e) */

/* Estimate equation (19) using the basic stochastic frontier model to

obtain transitory (in)efficiency */

frontier esl , distribution(hnormal)

predict ineff_trans , u /* Predict transitory inefficiency , E(u|e) */

predict eff_trans , te /* Predict transitory efficiency , E(exp(-u)|e) */ �

4.4 Implementation of Colombi et al. (2014) and Kumbhakar

et al. (2014) Models

The multi-step procedure to estimate the model specified in Colombi et al. (2014) and

Kumbhakar et al. (2014) can be implemented in Stata using the command for panel

data estimation, xtreg, together with the routines for basic stochastic frontier model

estimation, e.g., frontier or sfcross. A snippet of Stata codes for implementing the

Kumbhakar et al. (2014) model is provided in Table 7.

Similarly, R users can utilise panel data estimation routines (e.g., plm function) com-

bined with commands for estimation of the basic stochastic frontier model discussed above

(e.g, sfa or frontier) to estimate the Colombi et al. (2014) and Kumbhakar et al. (2014)

models.

The implementation of the procedure in Matlab requires more effort since it is not easy

(as in Stata or R) to perform panel data regression with this platform. With Matlab, one
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needs to write their own code or download and install the panel data toolbox, e.g. the

one written by Álvarez et al. (2017), to estimate a panel data regression model.

5 Stochastic Frontier Models with Determinants of

Inefficiency

An interesting generalisation of stochastic frontier paradigm is extending the models to

examine the impact of exogenous determinants on technical inefficiency. It is usually done

by parameterising the parameters of inefficiency distribution, i.e., the pre-truncated mean

or/and variance, as a function of exogenous variables. The approaches are applicable in

both cross-sectional and panel data settings, and since it can be easily extended to panel

data settings, here we focus our discussion on the cross-sectional context.

5.1 Popular Models

Cornwell et al. (1990) was the first to develop a model in which determinants of efficiency

could be included in the stochastic frontier formulation. However, due to the linear way

in which the determinants of efficiency were included in the regression model their fixed

effect estimator could not point identify both a covariate’s effect on efficiency and its

effect on the level of production. Kumbhakar et al. (1991) addressed this identification

problem by specifying the efficiency determinants as a nonlinear function, parameterising

the pretruncated mean of inefficiency as a function of exogenous variable, specifically19

ui ∼ N+
(
µi, σ

2
u

)
,

µi = z′iδ,
(21)

where zi ∈ <k is a vector of k exogenous variables (including constant term) and δ is a

vector of the parameters to be estimated. Alternatively, Caudill et al. (1995) proposed

specifying the variance of the inefficiency distribution as

ui ∼ N+
(
0, σ2

ui

)
,

σ2
ui = exp (z′iδ) .

(22)

One can also at the same time parameterise both the pre-truncated mean and variance

of inefficiency as a function of exogenous variables, i.e, combining (21) and (22), as in

Wang (2002). These parametric stochastic frontier models are typically estimated using

19This model specification was cast in the panel data context and popularised by Battese and Coelli

(1995).
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the maximum likelihood estimator in much the same way as the basic stochastic frontier

model.

Wang and Schmidt (2002) suggested a different specification for modelling the deter-

minants of inefficiency based on a scaling property,20 specifically

ui ∼ g (zi|δ)u∗i , (23)

where g(·) is a positive function of the exogenous variables (the scaling function) and u∗i

is a positive random variable. With this specification, the distribution of inefficiency is

the same for all production units, i.e., governed by u∗i , while the scale of the inefficiency

distribution changes across production units depending on zi. The scaling property was

further explored in Alvarez et al. (2006). Among others, they provided a nice economic

interpretation for the scaling property in that u∗i represents the baseline (in)efficiency of

a production unit capturing things like the natural skills of its managers, meanwhile the

scaling function allows (or prevents) the production unit to exploit these natural skills

through other variables, zi, such as the experience and education of the managers, or the

environment in which the production unit operates. Moreover, Alvarez et al. (2006) also

devoted their attention to testing the hypothesis of the scaling property.

5.2 Implementation of Stochastic Frontier Models with Deter-

minants of Inefficiency

Most of the parametric models discussed in this section can be easily implemented using

Stata since the estimation routines for the basic stochastic frontier model in Stata also

provide options to specify the pretruncated mean and/or variance of inefficiency as a

function of the exogenous variables.

In particular, the Cornwell et al. (1990) estimator of course can be implemented using

standard panel techniques and linear projections. The model specified in (23) can be

estimated using nonlinear least squares without imposing any parametric assumption on

the distribution of u∗i or by the maximum likelihood based on the parametric distribution

of the composed error. The maximum likelihood approach can be implemented in Stata

by setting up the likelihood using the sfmodel command from Kumbhakar et al. (2015)

with the option hscale(·) and the log likelihood can be maximized using the standard

Stata routine ml max.

A snippet of Stata codes for implementing stochastic frontier models with determinants

of inefficiency is provided in Table 8.

20It is worth mentioning here that although being popularised by Wang and Schmidt (2002), Simar

et al. (1994) appear to be the first who analysed the scaling property in detail.
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Table 8: Illustration for implementation of stochastic frontier models with determinants

of inefficiency

************************************************************************

**** Illustration for implementation of stochastic frontier models *****

**************** with determinants of inefficiency *********************

************************ Partial Stata Codes ***************************

************************************************************************

/* Note that output , inputs , and exogenous variables are stored in

global Stata variables $y , $xlist , $zlist , respectively. Output and

inputs are in log forms */

/* Implementation for the Kumbhakar et al. (1991) model (using the

commands from Belotti et al. (2013) ) */

sfcross $y $xlist , distribution(tnormal) emean($zlist)

predict ineff_KGM , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_KGM , bc /* Predict inefficiency , i.e., E(exp(-u)|e) */

/* Implementation for the Caudill et al. (1995) model (using the

commands from Belotti et al. (2013) ) */

sfcross $y $xlist , distribution(hnormal) usigma($zlist)

predict ineff_CFG , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_CFG , bc /* Predict inefficiency , i.e., E(exp(-u)|e) */

/* Implementation for the Wang (2002) model (using the commands from

Belotti et al. (2013) ) */

sfcross $y $xlist , distribution(tnormal) emean($zlist) usigma($zlist)

predict ineff_W , u /* Predict inefficiency , i.e., E(u|e) */

predict eff_W , bc /* Predict inefficiency , i.e., E(exp(-u)|e) */

/* Implementation for the Wang and Schmidt (2002) model (using the

commands from Kumbhakar et al. (2015) ) */

sfmodel $y , prod dist(t) frontier($xlist) scaling hscale($zlist) tau cu

ml max

sf_predict , jlms(ineff_WH) /* Predict inefficiency , i.e., E(u|e) */

sf_predict , bc(eff_WH) /* Predict inefficiency , i.e., E(exp(-u)|e) */ �
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6 Semi-parametric Stochastic Frontier Models

Another generalisation of the stochastic frontier paradigm is to relax parametric assump-

tions imposed on the functional form of the production frontier and to some extent the

parametric assumption on the distribution of inefficiency.

6.1 The variety of models

Banker and Maindiratta (1992) appear to be among the first attempting to estimate

stochastic frontier models semiparametrically. They proposed a framework combining

stochastic and deterministic frontier (i.e., data envelopment analysis) approaches and

developed techniques for the maximum likelihood estimation with nonparametric charac-

terisation of classes of monotone and concave production frontiers. Other early attempts

belong to Fan et al. (1996) and Kneip and Simar (1996), who suggested using nonpara-

metric kernel regression methods in the framework of parametric maximum likelihood

estimation. Specifically, Fan et al. (1996) proposed a multi-stage semiparametric like-

lihood estimation approach, in which the Nadaraya-Watson nonparametric estimator is

employed in the first stage to estimate the average production relationship and a full

parametric maximum likelihood estimator is used in the next stage to back out the con-

ditional mean of inefficiency, which is utilised in the last stage to identify the frontier.

Kneip and Simar (1996) followed a similar strategy with Fan et al. (1996) but in a panel

data setting.

Semi-parametric panel frontiers were also considered in a series of papers by Park et al.

(1998, 2003, 2007) wherein firm inefficiency effects are endogenous. They constructed the

semiparametric efficiency bounds and the corresponding semiparametric efficient estima-

tors for such models under differing assumptions about the form of endogeneity, the serial

dependence of the idiosyncratic error, and possible dynamic structures for the panel data

model. They used kernel smoothers in these modeling efforts as did Adams et al. (1997,

1999), and Adams and Sickles (2007). Current Stata software for these models is in the

development stage in Badunenko et al. (2021), while existing Matlab and R codes for

these semi-nonparametric panel frontier models can be found on the website that ac-

companies Sickles and Zelenyuk (2019) (see the links in footnote 14 and footnote 15).

Model averaging methods utilised in Sickles (2005), Duygun et al. (2017) and Isaksson

et al. (2020) also can be found on that website and are currently being used in developing

consensus productivity growth estimates for the United Nations Industrial Development

Organization (UNIDO).

Another approach to estimate stochastic frontier models semiparametrically was pro-
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posed by Kumbhakar et al. (2007), who suggested employing the local likelihood estima-

tion. The key distinction between this approach and the parametric likelihood approach

is that the estimation is localised in the sense that individual contribution to the likeli-

hood is determined by the kernel-based weights instead of the equal weights. Kneip et al.

(2015) extended the work of Kumbhakar et al. (2007) by relaxing the parametric assump-

tion on the distribution of inefficiency, while Park et al. (2015) suggested an alternative

parameterisation of the local likelihood and outlined a framework for allowing categorical

variables in the local likelihood context.

Semi-parametric methods have also been introduced into the stochastic frontier paradigm

to deal with specifications of inefficiency. Cornwell et al. (1990) utilised a second-order

Taylor series in a time trend to model time varying inefficiency while Lee and Schmidt

(1993) specified the time-varying and cross-sectionally varying inefficiency using a one-

factor multiplicative model. Extensions to mixed models and more general factor models

were pursued by Ahn et al. (2007, 2013), Kneip et al. (2004), Kneip and Sickles (2011),

and Kneip et al. (2012). The latter model is programmed in Matlab and R on the soft-

ware website for Sickles and Zelenyuk (2019) and Sickles et al. (2020) (see the links in

footnote 14 and footnote 15) and its coding in Stata is in process in Badunenko et al.

(2021). Finally, the Kneip and Sickles (2011) general cross-sectional and time-varying

factor model is available in the R package from Oualid Bada and discussed at length in

Bada and Liebl (2014).21

6.2 Simar et al. (2017) Model

Recently, Simar et al. (2017) suggested using the local least squares method as an alterna-

tive for the local likelihood approach to estimate the stochastic frontier models. The local

least squares approach is much simpler to compute and easier to implement compared to

the local likelihood, and we will focus our discussion here on this approach.

The model in Simar et al. (2017) can be formulated as follows

yi = m (xi, zi) + vi − ui, i = 1, . . . , n, (24)

where m (xi, zi) is the production frontier, yi ∈ <1
+ is the output, xi ∈ <p+ is a vector of

inputs, and zi ∈ <k is a vector of k variables that can influence the production process. vi

is statistical noise, which is assumed to have zero mean, i.e., E (vi|xi, zi) = 0, and positive

finite variance, i.e., V AR (vi|xi, zi) ∈ (0,∞). Meanwhile, ui is the inefficiency term follow-

ing a one-sided distribution, with a positive mean, i.e., E (ui|xi, zi) = µu (xi, zi) ∈ (0,∞)

21Software instructions and downloadable codes are accessible at https://www.jstatsoft.org/

article/view/v059i06.
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and positive finite variance, i.e., V AR (ui|xi, zi) ∈ (0,∞). As in other stochastic frontier

models, ui and vi are also assumed to be independent, conditionally on (xi, zi).

Now, let us define

ε∗i = vi − ui + µu (xi, zi) , (25)

and

r1 (xi, zi) = m (xi, zi)− µu (xi, zi) . (26)

We can rewrite (24) as

yi = r1 (xi, zi) + ε∗i . (27)

Since E (ε∗i |xi, zi) = 0, we can use standard nonparametric methods (e.g., local polyno-

mial least squares) to estimate r1 (xi, zi). In order to estimate the individual inefficiency,

we also need to make a parametric assumption on the distribution of inefficiency, e.g.,

ui|xi, zi ∼ N+
(
0, σ2

u (xi, zi)
)
. (28)

With the distributional assumption, the conditional mean of inefficiency can be estimated

using the following relationships

σ3
u (xi, zi) =

√
π

2

(
π

π − 4

)
r3 (xi, zi) , (29)

and

µu (xi, zi) =

√
2

π
σu (xi, zi) , (30)

where r3 (xi, zi) = E
(
(ε∗i )

3 |xi, zi
)

is the third moment of the composed error. Specifically,

the residuals from the nonparametric estimation of the model in (27), ε̂∗i , can be utilised

to obtain the nonparametrical estimates of the third moment of the composed error,

r̂3 (xi, zi). The estimates of technical inefficiency then can be obtained by plugging the

r̂3 (xi, zi) into (29) and (30).22

6.3 Implementation of Simar et al. (2017) Model

Estimation of the Simar et al. (2017) model can be implemented using the standard

Stata routines with a bit of additional programming. The key command is npregress

which helps to perform the local least square estimation in Stata environment. As an

22The distributional assumptions on ui and vi allow obtaining a generalised version of JLMS type

estimates, although more interesting in the semi/non-parametric context are the estimates of E(ui|xi =

x, zi = z), which can be done for any values of interest for (x, z). The elasticities of E(ui|xi = x, zi = z)

can also be obtained, which can be done without any parametric assumptions on distributions, just by

assuming that ui comes from a one-parameter scale family (see Section 4 in Simar et al., 2017, for more

details).
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illustration, we provide here in Table 9 a part of a Stata do file that implements the

procedure discussed in the previous subsection to estimate the Simar et al. (2017) model.

Similarly, one can implement the estimation of the Simar et al. (2017) model in R

with the local least squares estimation being carried out by the np package with a bit

of additional programming similar to the one we presented here (and as was done by

Parmeter and Zelenyuk (2019)). The implementation of the model in Matlab requires

more effort since one needs to write his/her own codes for the local least square estimation

(as was done by Simar et al. (2017)). Preparation of user-friendly packages in R and

Matlab is currently in progress.
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Table 9: Illustration for implementation of the Simar et al. (2017) model

************************************************************************

*** Illustration for implementation of the Simar et al. (2017) model ****

**************************** Partial Stata Codes *************************

************************************************************************

/* Estimate the model in (27) using local linear estimator and store

predicted value in variable r1hat. Note that output , inputs , and

exogenous variables are stored in global Stata variables $y , $xlist ,

$zlist , respectively. Output and inputs are in log forms */

/* Note that the default options in npregress command is to use

Epanechnikov kernel and select bandwidth by cross -validation , i.e.,

by minimizing the integrated mean squared error of the prediction. */

npregress kernel $y $xlist $zlist , estimator(linear) predict(r1hat)

noderivatives

/* Obtain the residual and the residual cubed from estimation of the

model in equation (27)*/

gen ehat = $y - r1hat

gen ehat3 = ehat^3

/* Estimate the third moment of the composed error using local linear

estimator and store predicted value in variable r3hat */

npregress kernel ehat3 $xlist $zlist , estimator(linear) predict(r3hat)

noderivatives

/* Calculate sigma u hat cubed using equation (29) */

gen sigmauhat3 = sqrt(_pi/2)*(_pi/(_pi -4))*r3hat

/* Calculate sigma u hat. Note that following Simar et al. (2017), we

set negative values of sigma u hat equal zero */

gen sigmauhat = max(sigmauhat3 ^(1/3),0)

/* Calculate estimated values of inefficiency using equation (30)*/

gen muhat = sqrt(2/_pi)*sigmauhat �
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7 Empirical Illustration

In this section, we provide a small empirical illustration of the models discussed in the

previous sections, including the basic stochastic frontier model, the stochastic panel data

models, and the semi-parametric stochastic frontier model.2324 For this purpose, we use

the data set about rice producers in the Philippines, which was also utilised for the similar

purpose and popularised in the literature by Coelli et al. (2005).2526

Specifically, the data set includes the information about 43 rice producers in the Tarlac

region of the Philippines in a period of 8 years from 1990 to 1997. We extract from the

data set the information on one output and three inputs including the area planted, labour

used and fertiliser used. The output is measured in tonnes of freshly threshed rice, while

the inputs are measured in hectares, man-days of family and hired labour, and kilograms

of active ingredients, respectively (see more details about the description of the data in

Coelli et al., 2005).

For this empirical illustration, we deliberately apply all the models to the data and

focus our discussion on the estimated inefficiency to reflect the differences in results across

the models. Moreover, for all the models that require a functional form for the produc-

tion relationship, we assume a linear in log production function, i.e., the Cobb-Douglas

production function.27 The Stata codes for implementing this analysis are provided in

the Appendix.

The summary statistics of the estimated inefficiency are provided in Table 10, and

their histograms are shown in Figure 1.28 Meanwhile, the variations of the estimated

inefficiency across the years are shown in Figure 2.

At first glance, we can see that the means of estimated inefficiency vary significantly

across the models, ranging from 0.20 (the Battese and Coelli (1992) model) to 0.45 (the

Kumbhakar et al. (2014) model).29 This is understandable since each model depends on

23For the results to some extent to be comparable, we deliberately do not include in this empirical

illustration the stochastic frontier models with determinants of inefficiency.
24Also, due to the computational difficulty in optimising the likelihood function, the result from Kumb-

hakar (1990) is not available for the dataset used in this empirical illustration.
25Downloaded from http://www.uq.edu.au/economics/cepa/crob2005/software/CROB2005.zip.
26For an illustration with this data with various DEA models see, e.g., Simar and Zelenyuk (2020).
27To estimate the cross-sectional models, e.g., Aigner et al. (1977) and Simar et al. (2017) models, we

pool the data across years.
28The estimated distribution of estimated inefficiency from the Simar et al. (2017) model is showing

some mass at zero (i.e., the phenomenon referred to as ‘wrong skewness’ in stochastic frontier analysis)

because 79 out 344 observations have σ̂3
u (xi, zi) < 0 and their inefficiency is set to equal to 0.

29It is important to clarify here that for all the models, the means we refer to are averages of the

estimates of individual inefficiencies.
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Table 10: Summary statistics of the estimated inefficiency

Models Mean Std. Dev. Min Q1 Median Q3 Max

Aigner et al. (1977) 0.36 0.25 0.04 0.18 0.29 0.47 2.00

Schmidt and Sickles (1984) (fixed effects) 0.34 0.20 0.00 0.18 0.30 0.50 0.98

Schmidt and Sickles (1984) (random effects) 0.23 0.12 0.00 0.13 0.21 0.33 0.60

Pitt and Lee (1981) 0.21 0.14 0.05 0.10 0.16 0.31 0.70

Cornwell et al. (1990) 0.44 0.27 0.00 0.27 0.41 0.57 2.09

Battese and Coelli (1992) 0.20 0.15 0.04 0.08 0.14 0.28 0.92

Greene (2005a,b) (random effects) 0.33 0.24 0.03 0.17 0.27 0.43 1.89

Greene (2005a,b) (fixed effects) 0.35 0.23 0.02 0.18 0.30 0.47 1.87

Kumbhakar et al. (2014) (Total) 0.45 0.25 0.10 0.27 0.38 0.55 2.01

Kumbhakar et al. (2014) (Persistent) 0.15 0.10 0.02 0.06 0.13 0.24 0.49

Kumbhakar et al. (2014) (Transitory) 0.29 0.20 0.03 0.16 0.24 0.37 1.67

Simar et al. (2017) 0.25 0.14 0.00 0.17 0.30 0.35 0.45

different sets of assumptions. Moreover, it is important for practitioners to be aware of

these differences and carefully justify the assumptions of the model of their choice before

proceeding with their analysis. For example, with this data set, the difference in estimated

inefficiency between the fixed effects and random effects frameworks is significant when

all the unobserved individual heterogeneity is viewed as inefficiency (e.g, in the Schmidt

and Sickles (1984) model), but the difference is minimal when inefficiency is distinguished

from the unobserved individual heterogeneity (e.g., in the Greene (2005a,b) model).

Furthermore, recall that the temporal pattern of inefficiency is also specified differently

in different models. As illustrated in Figure 2, the estimated inefficiency is constant over

time in the Schmidt and Sickles (1984) and Pitt and Lee (1981) models, but follows a

quadratic trend in the Cornwell et al. (1990) model and has a linear trend in Battese

and Coelli (1992). Meanwhile, other models, such as Greene (2005a,b) and Kumbhakar

et al. (2014), do not impose any temporal patterns on the time varying component of

inefficiency.
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8 Concluding Remarks

This chapter discussed a variety of stochastic frontier models to estimate the technical

efficiency of production units. Our chapter also documented the estimation routines used

to implement these methods for practitioners, especially those who are willing to use

Stata, but also with tips on where to find analogous programs for R and Matlab users.

Although many recent developments in the field were covered in this chapter, it was

still a relatively brief introduction to the stochastic frontier paradigm with some other

generalisations remaining untouched, such as Bayesian stochastic frontier30, stochastic

metafrontier31, spillovers and spatial frontiers32, and endogeneity33. We refer interested

readers to more extensive resources (e.g., Sickles and Zelenyuk, 2019; Kumbhakar et al.,

2021a,b) for more detailed discussions of these and other topics.

Finally, many other important developments in the field are still in progress, thus we

encourage readers to check for updates as well as contribute themselves to such develop-

ments and discoveries.
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Appendix

Listing 1: Stata codes for the empirical illustration

set more off

clear all

log using "SFABookChapter_Empirical", text replace

// Load data

import delimited "rice.txt", delimiter(space) varnames(1) ///

encoding(ISO -8859 -2)

// Generate variables

foreach X of varlist prod area labor npk {

generate l`X' = ln(`X')

}

global y lprod

global xlist llabor larea lnpk /*Cobb -Douglas function */

global id fmercode

global t yeardum

xtset $id $t

************************************************************************

/* the Aigner et al. (1977) model */

************************************************************************

sfcross $y $xlist , distribution(hnormal)

estimates store ALS

predict ineff_ALS , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_ALS "The Aigner et al. (1977) model"

************************************************************************

/* the Schmidt and Sickles (1984)model */

**************************** Partial Stata Codes *************************

/* the fixed effect framework */

sfpanel $y $xlist , model(fe)

estimates store SS_fe

predict ineff_SS_fe , u /* Predict inefficiency */

label variable ineff_SS_fe ///

"The Schmidt and Sickles (1984)(fixed effects)"

/* the random effect framework */

sfpanel $y $xlist , model(regls)

estimates store SS_re

predict ineff_SS_re , u /* Predict inefficiency */

label variable ineff_SS_re ///

"The Schmidt and Sickles (1984) (random effects)"
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************************************************************************

/* the Pitt and Lee (1981) model */

************************************************************************

sfpanel $y $xlist , model(pl81)

estimates store PL

predict ineff_PL , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_PL "The Pitt and Lee (1981) model"

************************************************************************

/* the Cornwell et al. (1990) model */

************************************************************************

sfpanel $y $xlist , model(fecss)

estimates store CSS

predict ineff_CSS , u /* Predict inefficiency */

label variable ineff_CSS "The Cornwell et al. (1990) model"

************************************************************************

/* the Battese and Coelli (1992) model */

************************************************************************

sfpanel $y $xlist , model(bc92)

estimates store BC

predict ineff_BC , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_BC "The Battese and Coelli (1992) model"

************************************************************************

/* the Green (2005a ,b) models */

************************************************************************

/* the random effect framework */

sfpanel $y $xlist , distribution(hnormal) model(tre)

estimates store G_tre

predict ineff_G_tre , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_G_tre "The Green (2005a ,b) model (random effects)"

/* the fixed effect framework */

/* Implementation using the marginal maximum likelihood estimator */

sftfe $y $xlist , distribution(hnormal) estimator(within)

estimates store G_mmle

predict ineff_G_mmle , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_G_mmle "The Green (2005a ,b) model (fixed effects)"

************************************************************************

/* the Kumbhakar et al. (2014) models */

************************************************************************

xtreg $y $xlist , re

estimates store KLH

predict alp , u /* Obtain estimates of alpha */

predict esl , e /* Obtain estimates of the composed error */

/* Estimate equation (19) using the basic stochastic frontier model to

obtain persistent (in)efficiency */
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gen constant = 1 /* Generate contant to use in sfcross */

sfcross alp constant , distribution(hnormal) noconstant

predict ineff_KHL_pers , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_KHL_pers ///

"The Kumbhakar et al. (2014) model (Persistent)"

/* Estimate equation (19) using the basic stochastic frontier model to

obtain transitory (in)efficiency */

sfcross esl constant , distribution(hnormal) noconstant

predict ineff_KHL_trans , u /* Predict inefficiency , i.e., E(u|e) */

label variable ineff_KHL_trans ///

"The Kumbhakar et al. (2014) model (Transitory)"

/* Calculate the total inefficiency */

gen ineff_KLH = ineff_KHL_pers + ineff_KHL_trans

label variable ineff_KLH "The Kumbhakar et al. (2014) model (Total)"

************************************************************************

/* the Simar et al. (2017) */

************************************************************************

/* Estimate model in (27) using local linear estimator and store

predicted value in variable r1hat. Note that output , inputs , and

exogenous variables are stored in global Stata variables $y , $xlist ,

$zlist , respectively */

/* Note that the default options in npregress command is to use

Epanechnikov kernel and select bandwidth by cross -validation , i.e.,

by minimizing the integrated mean squared error of the prediction. */

npregress kernel $y $xlist , estimator(linear) predict(r1hat) ///

noderivatives

/* Obtain the residual and the residual cubed from the estimation of

model in equation (27)*/

gen ehat = $y - r1hat

gen ehat3 = ehat^3

/* Estimate the third momment of the composed error using local linear

estimator and store predicted value in variable r3hat */

npregress kernel ehat3 $xlist , estimator(linear) predict(r3hat) ///

noderivatives

/* Calculate sigma u hat cubed using equation (29) */

gen sigmauhat3 = sqrt(_pi/2)*(_pi/(_pi -4))*r3hat

/* Calculate sigma u hat. Note that following Simar et al. (2017), we

set negative values of sigma u hat equal zero */

gen sigmauhat = max(sigmauhat3 ^(1/3),0)

/* Calculate estimated values of inefficiency using equation (30)*/

gen ineff_SKVZ = sqrt(2/_pi)*sigmauhat

label variable ineff_SKVZ "The Simar et al. (2017) model"
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************************************************************************

/* Summarising and exporting the results */

************************************************************************

/* The estimated coefficients of the frontiers */

esttab ALS SS_fe SS_re PL CSS BC G_tre G_mmle KLH

esttab ALS SS_fe SS_re PL CSS BC G_tre G_mmle KLH ///

using coefficients.csv , replace

/* The estimated inefficiency */

global myvars ineff_ALS ineff_SS_fe ineff_SS_re ineff_PL ineff_CSS ///

ineff_BC ineff_G_tre ineff_G_mmle ineff_KLH ineff_KHL_pers ///

ineff_KHL_trans ineff_SKVZ

estpost summarize $myvars , detail

esttab using inefficiency.csv , ///

cells("count mean sd min p25 p50 p75 max") replace

************************************************************************

/* Histograms of esitmated inefficiency */

************************************************************************

foreach X of varlist $myvars {

histogram `X', bin(100) normal `kden'

graph save `X'.gph , replace

}

graph combine ineff_ALS.gph ineff_SS_fe.gph ineff_SS_re.gph ///

ineff_PL.gph ineff_CSS.gph ineff_BC.gph ineff_G_tre.gph ///

ineff_G_mmle.gph ineff_KLH.gph ineff_KHL_pers.gph ///

ineff_KHL_trans.gph ineff_SKVZ.gph , col(3) scale(1)

graph export histogramineff.png , replace

************************************************************************

/* Plot esitmated inefficiency across years */

************************************************************************

sort yeardum

label variable yeardum "year"

foreach X of varlist $myvars {

by yeardum , sort: egen `X'_Q1 = pctile(`X'), p(25)

by yeardum , sort: egen `X'_Q2 = pctile(`X'), p(50)

by yeardum , sort: egen `X'_Q3 = pctile(`X'), p(75)

label variable `X'_Q1 "First quartile"

label variable `X'_Q3 "Third quartile"

label variable `X'_Q2 "Median"

local labeltext : variable label `X'

graph two line `X'_Q1 `X'_Q2 `X'_Q3 yeardum , ///

title(`labeltext ', size(small))

graph save `X'_trend.gph , replace

}

graph combine ineff_ALS_trend.gph ineff_SS_fe_trend.gph ///
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ineff_SS_re_trend.gph ineff_PL_trend.gph ///

ineff_CSS_trend.gph ineff_BC_trend.gph ///

ineff_G_tre_trend.gph ineff_G_mmle_trend.gph ///

ineff_KLH_trend.gph ineff_KHL_pers_trend.gph ///

ineff_KHL_trans_trend.gph ineff_SKVZ_trend.gph , ///

col(3) scale(1) xcommon ycommon

graph export allineff_trend.png , replace

log close �
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Heidelberg, pp. 83–114.

Kneip, A., Sickles, R. C. and Song, W. (2004), Functional data analysis and mixed ef-

fect models, in J. Antoch, ed., ‘COMPSTAT 2004 — Proceedings in Computational

Statistics’, Physica-Verlag HD, Heidelberg, pp. 315–326.

Kneip, A., Sickles, R. C. and Song, W. (2012), ‘A new panel data treatment for hetero-

geneity in time trends’, Econometric Theory pp. 590–628.

Kneip, A. and Simar, L. (1996), ‘A general framework for frontier estimation with panel

data’, Journal of Productivity Analysis 7(2), 187–212.

Kneip, A., Simar, L. and Van Keilegom, I. (2015), ‘Frontier estimation in the presence of

measurement error with unknown variance’, Journal of Econometrics 184(2), 379–393.

Kumbhakar, S. C. (1987), ‘The specification of technical and allocative inefficiency in

stochastic production and profit frontiers’, Journal of Econometrics 34(3), 335–348.

Kumbhakar, S. C. (1990), ‘Production frontiers, panel data, and time-varying technical

inefficiency’, Journal of Econometrics 46(1-2), 201–211.

40



Kumbhakar, S. C., Ghosh, S. and McGuckin, J. T. (1991), ‘A generalized production fron-

tier approach for estimating determinants of inefficiency in U.S. dairy farms’, Journal

of Business & Economic Statistics 9(3), 279–286.

Kumbhakar, S. C., Lien, G. and Hardaker, J. B. (2014), ‘Technical efficiency in compet-

ing panel data models: a study of Norwegian grain farming’, Journal of Productivity

Analysis 41(2), 321–337.

Kumbhakar, S. C., Park, B. U., Simar, L. and Tsionas, E. G. (2007), ‘Nonparametric

stochastic frontiers: A local maximum likelihood approach’, Journal of Econometrics

137(1), 1–27.

Kumbhakar, S. C., Parmeter, C. F. and Zelenyuk, V. (2021a), Stochastic frontier analy-

sis: Foundations and advances I, in S. C. Ray, R. Chambers and S. Kumbhakar, eds,

‘Handbook of Production Economics’, Springer Singapore, Singapore, pp. 1–40.

Kumbhakar, S. C., Parmeter, C. F. and Zelenyuk, V. (2021b), Stochastic frontier analysis:

Foundations and advances II, in S. C. Ray, R. Chambers and S. Kumbhakar, eds,

‘Handbook of Production Economics’, Springer Singapore, Singapore, pp. 1–38.

Kumbhakar, S. C. and Tsionas, E. G. (2005), ‘Measuring technical and allocative inef-

ficiency in the translog cost system: a Bayesian approach’, Journal of Econometrics

126(2), 355–384.

Kumbhakar, S. C. and Tsionas, E. G. (2008), ‘Estimation of input-oriented technical

efficiency using a nonhomogeneous stochastic production frontier model’, Agricultural

Economics 38(1), 99–108.

Kumbhakar, S. C., Wang, H. and Horncastle, A. P. (2015), A practitioner’s guide to

stochastic frontier analysis using Stata, Cambridge University Press.

Kutlu, L. (2010), ‘Battese-Coelli estimator with endogenous regressors’, Economics Let-

ters 109(2), 79–81.

Lee, Y. H. and Schmidt, P. (1993), A production frontier model with flexible temporal

variation in technical efficiency, in H. O. Fried, S. S. Schmidt and C. K. Lovell, eds, ‘The

measurement of productive efficiency: Techniques and applications’, Oxford University

Press New York, pp. 237–255.

Liu, J., Sickles, R. C. and Tsionas, E. G. (2017), ‘Bayesian treatments for panel data

stochastic frontier models with time varying heterogeneity’, Econometrics 5, 1–21.

41



Malikov, E., Kumbhakar, S. C. and Tsionas, M. G. (2016), ‘A cost system approach to

the stochastic directional technology distance function with undesirable outputs: The

case of US banks in 2001–2010’, Journal of Applied Econometrics 31(7), 1407–1429.

Meeusen, W. and van den Broeck, J. (1977), ‘Efficiency estimation from Cobb-Douglas

production functions with composed error’, International Economic Review 18(2), 435–

444.

Mutter, R. L., Greene, W. H., Spector, W., Rosko, M. D. and Mukamel, D. B. (2013),

‘Investigating the impact of endogeneity on inefficiency estimates in the application

of stochastic frontier analysis to nursing homes’, Journal of Productivity Analysis

39(2), 101–110.

Nguyen, B. H. and Zelenyuk, V. (2021), Aggregation of outputs and inputs for DEA

analysis of hospital efficiency: Economics, operations research and data science per-

spectives, in J. Zhu and V. Charles, eds, ‘Data-Enabled Analytics: DEA for Big Data’,

Springer. forthcoming.

O’Donnell, C. J., Rao, D. P. and Battese, G. E. (2008), ‘Metafrontier frameworks for the

study of firm-level efficiencies and technology ratios’, Empirical economics 34(2), 231–

255.
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