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Introduction

Increasing global living standard requires increasing agricultural productivity. A large body

of research suggests that biotechnological innovations in the form of genetically modified

organisms (GMO) promise to revolutionize agricultural productivity (for example, Wheeler

and Von Braun 2013; Bailey-Serres et al. 2019; Eshed and Lippman 2019; Zaidi et al. 2019).

But empirical measures of the effects of GMO techniques on agriculture’s productivity as a

sector are lacking. Available evidence on GMO’s agricultural impact comes from laboratory

experiments, farm-level studies, and regional-level studies. While valuable, these analyses

cannot capture the macroeconomic phenomena that affect agriculture’s role in promoting

sustainable development.

Using a newly available data set that covers 15 OECD countries for the 1973-2011 period,

we study the impact of adopting GMO techniques on aggregate agricultural productivity.

Because of data availability, our study focuses on the agricultural sectors of richer countries.

Nevertheless, it may have important implications for future agricultural development in

poorer nations. Agricultural productivity differences between richer and poorer nations are

remarkably large (Caselli 2005; Restuccia et al. 2008; Lagakos and Waugh 2013; Adamopou-

los and Restuccia 2014). Because agricultural employment dominates non-agricultural em-

ployment in developing economies, closing the agricultural productivity gap between poorer

and richer nations may be critical to lifting living standards world wide. And understanding

agricultural-productivity drivers in richer countries is crucial to identifying opportunities for

improving poorer-countries’ agricultural productivity. This paper studies whether adopting

GMO techniques enhances sectoral agricultural productivity. Surprisingly, given existing

micro-level evidence, the answer appears to be no.

The analysis proceeds as follows: We first introduce a productivity accounting framework

that distinguishes between GMO and non-GMO aggregate production processes. We then

discuss our data, present the basic empirical results, and detail robustness checks for our

findings. The paper closes with a discussion of the implications of our analysis.
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The Model

We assume that aggregate agricultural value added, Y , is a function of aggregate agricultural

capital, K, and aggregate agricultural labor, L:

Y = AKbL1−b. (1)

Dividing both sides of (1) by L and taking natural logarithms gives:

ln y = a+ b ln k,

where a = lnA and lower-case letters are variables expressed in per unit of labor terms,

y = Y
L
and k = K

L
. Value added per unit of labor (labor productivity, LP), y, has two drivers:

agricultural productivity (AP) measured by A and capital intensity, k. 1

We assume that GMO techniques and non-GMO techniques represent different produc-

tion processes. To distinguish potential outcomes from observed outcomes, we denote by

ln y (0) = a (0) + b (0) ln k

the non-GMO process and by

ln y (1) = a (1) + b (1) ln k

1Our data on capital and labor were constructed using hedonic adjustments over time and other dimen-

sions to accommodate non-neutral technical differences over time. Hence, our empirical investigation focuses

on factor-neutral AP. The parameter,

A =
Y

KbL1−b
,

measures value added per unit of the aggregate input KbL1−b. In the macroeconomic growth and develop-

ment literatures, which focus on returns to aggregate captial and labor, it is often called either total factor

productivity or efficiency. The former is more common in intertemporal analyses, and the latter in cross-

country analyses. In intertemporal analyses, such changes in total factor productivity are usually identified

with technical change. In cross-country analyses, differences are interpreted as country-specific productivity

differences. This definition of total factor productivity, however, differs from that employed, for example,

in official US statistics reported by the Economic Research Service, United States Department of Agricul-

ture (see https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-u-s/). Their definition

of TFP is total agricultural output (and not value added) divided by total agricultural input use. To prevent

confusion, we use the AP terminology in our study.
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the GMO process. Let G be an indicator variable with value 1 for a GMO process and 0 for

a non-GMO process. Letting ln y denote the observed natural log of LP gives the following

relation between observed and potential outcomes:

ln y = G ln y (1) + (1−G) ln y (0)

= a (0) + b (0) ln k + αG+ βG ln k.

Here α ≡ a (1)− a (0) measures the AP difference between a GMO and non-GMO process,

and β ≡ b (1)− b (0) measures the differential between the output elasticity of capital for a

GMO and non-GMO process. These parameters are the focus of our analysis.

To link our conceptual model to an observational setting, we use the empirical specifica-

tion:

ln yit = c0 + ui + vt + b0lnkit + αGit + βGit ln kit + ϵit. (2)

Here subscripts it denote the ith country at time t, ui is a country-specific AP effect that

controls for cross-country productivity differences, vt is a time-specific AP effect that con-

trols for time-varying productivity differences, and ϵit is a white-noise, productivity error

component.

To estimate this structure, we must accommodate three econometric challenges. GMO

adoption is not randomly assigned across countries, which raises the potential for sample-

selection issues. Second, a country’s GMO adoption decision as well as its capital investment

likely depends on macroeconomic factors, public attitudes, and other omitted variables ex-

ternal to our model. Finally, countries adopting GMO techniques do so with different inten-

sities at different time periods. An annex details our methods for dealing with each of these

problems.2

The Data

The data are for 15 OECD countries for the period of 1973-2011.3 They extend data sets

detailed in Ball et al. (2001, 2010) and Sheng et al. (2015). The agricultural production

2Please refer to Annex A for more details.
3The countries are: Belgium, Luxembourg, Germany, France, Spain, Italy, the Netherlands, the United

Kingdom, Ireland, Sweden, Denmark, Finland, the United States, Australia, and Canada.
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account data consist of a country-by-year panel of price and quantity indexes for three

outputs (crops, livestock, and other non-separable activities) and four inputs (capital, land,

labor, and intermediate inputs).

Our aggregate performance measure is real output value added in the farm sector (agri-

culture, excluding forestry and fisheries). It is calculated using gross agricultural output

value (the sum of output of agricultural goods and the output of goods and services from

non-separable secondary activities) minus the total value of intermediate inputs, deflated by

the relative price of aggregate agricultural output. We evaluate agricultural output from the

producer perspective. That is, subsidies are added to and indirect taxes are subtracted from

market values. In those countries where a forfeit system prevails, the difference between

payments and refunds of the tax on value added (or VAT) is included in the value of output.

Our model considers two aggregate inputs, capital and labor. Other inputs are aggregated

into a single aggregate, intermediate inputs, whose value is then subtracted from aggregate

output to create value added. The labor input is measured by aggregating hours worked

by hired and self-employed (and unpaid family workers) workers using the corresponding

compensation as weights. The compensation of hired farm workers is defined as the average

hourly wage plus the value of perquisites and employer contributions to social insurance. The

compensation of self-employed workers is derived by using the accounting identity where the

value of total output value is equal to total factor outlay. Quality adjustments have been

made to account for the difference in age, education and gender of rural labor force across

countries over time.

Capital consists of land and depreciable capital assets including non-dwelling buildings

and structures, plant and machinery, and transportation vehicles. Capital input (or capital

services) is derived from capital stocks based on the constant efficiency model with a set of

assumptions to model variations in service lives (Ball et al. 2008, 2001; Sheng et al. 2020).

Capital stock of depreciable assets is constructed as a weighted sum of past investments for

each type of asset. The weights correspond to the relative efficiencies of capital goods of

different ages, so that the weighted components of capital stock have the same efficiency.

Capital stock of land is constructed as the ratio of the value of land of different types in

agriculture to the corresponding price index. The price index of land is estimated using
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hedonic methods that allow for spatial differences in land characteristics or quality. This

treatment provides a means of incorporating important but difficult to measure factors such

as environmental and natural resource endowments into the capital measure.

Finally, we measure GMO adoption by constructing a time-variant dummy for each coun-

try using the data on GMO approval events from International Services for the Acquisition

of Agri-biotech Application (ISAAA, 2019). The dummy variable takes one in a country for

each year after the first GMO event has been commercially adopted, and otherwise zero.

Through the period of 1973-2011, 7 out of the 15 OECD countries have approved GMO

commercial use. They are the United States (1994), Canada (1995), Australia (1995), Spain

(1998), France (1998), Germany (2000), and Sweden (2010). Figure 1 illustrates the GMO

adoption time line.

Figure 1: Time line for GMO adoption of the 15 OECD countries

Note: The data are from GMO approval database (ISAAA, 2019), available online at

http://www.agropages.com/AgroData/.
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Empirical Analysis

Table 1 presents summary sample statistics on labor productivity, y, and capital intensity,

k, segregated according to eventual adoption strategy. Figure 2 presents a box-plot of y

also segregated over eventual adoption strategy. The vertical line between 1993 and 1994

separates the “pre-GMO” period from the period after the first commercial adoption of GMO

techniques. LP for both adopters and non-adopters exhibits an upward trend over the entire

sample period, although its growth appears slower for both after 1993. On average, LP for

GMO adopters is approximately 15% higher than that for non-adopters. But the dispersion

of LP for non-adopters is greater than that for GMO adopters. For example, the countries

with the highest LPs are non-adopters and with few exceptions so are the countries with the

lowest LPs.

Table 1: Summary statistics on LP and capital intensity segregated by GMO

adoption strategy
ln y ln k Num. of Obs.

non-GMO adopting countries -0.755 -1.582 351

(0.739) (0.699)

GMO adopting countries -0.628 -1.373 273

(0.594) (0.626)

pre-GMO adoption period (GMO countries) -1.060 -1.688 205

(0.766) (0.867)

post-GMO adoption period (GMO coun-

tries)

-0.361 -1.313 107

(0.619) (0.626)

Notes: Standard deviations are reported in parentheses.

Figure 3 presents the sample scatter diagram for ln y and ln k. Red triangles denote

observations for countries that eventually adopt GMO techniques and black dots non-GMO

countries. The solid red curved represents the LOWESS smoothed regression plot for the

GMO countries. The dotted black curve shows the smoothed regression plot for the non-

GMO countries. Both smoothed plots exhibit a non-negative slope that decreases as capital

intensity increases. At low capital-intensity levels, GMO countries exhibit a higher labor

productivity than non-GMO countries. This tendency reverses itself at higher levels of capital
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Figure 2: Boxplot of the natural log of LP segregated by GMO adoption strategy

Note: Sample outliers have been excluded for each year.

intensity. The data cloud formed by the red triangles appears to exhibit less dispersion and

more severe diminishing returns to capital (or, K) than that formed by the black dots.

Figure 3: Scatter and LOWESS smoothed regression between lny and lnk segre-

gated by GMO adoption strategy
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Table 2: Estimated impact of GMO adoption on agricultural LP: OLS and 2SLS

All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

Constant -0.987*** 0.283 0.359 - -

(0.184) (0.187) (0.211) - -

b0 - 0.787*** 0.798*** 0.755*** 0.679***

- (0.082) (0.082) (0.224) (0.216)

α 0.023 0.010 0.037 -0.239 -0.205

(0.078) (0.092) (0.102) (0.185) (0.174)

β - -0.147** -0.144** -0.513*** -0.493***

- (0.051) (0.053) (0.167) (0.152)

Number of Observations 585 585 453 453 453

R-squared 0.815 0.904 0.893 0.845 0.848

Number of countries 15 15 15 15 15

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.

Table 2 reports statistical estimates of b0, α, and β obtained from the empirical specifi-

cation:

ln yit − ln yi· = vt − v + b0
(
ln kit − ln ki·

)
+ α

(
Git −Gi·

)
+ β

(
Git ln kit −Gi· ln ki·

)
+ ϵit − ϵi·,

where ln yi· =
1
T

∑
t ln yit, ln ki· =

1
T

∑
t ln kit, Gi· =

1
T

∑
t Git, and Gi· ln ki· =

1
T

∑
t Git ln kit.

(Complete results for this specification are reported in Annex B.) The first column reports α

estimated as the mean LP difference between GMO and non-GMO countries that accounts

for country-specific and time-specific differences in AP. The estimated difference is positive

but small, .02 log points, and imprecisely estimated.

The second column reports OLS estimates of b0, α, and β. The estimate for α is positive

but even smaller than the mean-difference estimate and remains imprecisely estimated. The

OLS estimate for β is negative, about -.15 log points, and statistically significant at the .05

confidence level.
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Column 3 repeats the regression analysis summarized in Column 2 using a “matched

sample” (see Annex A for details) instead of the entire 15 country panel. Column 4 reports

parameters estimated using 2SLS in place of OLS applied to the matched sample (see Annex

A), and Column 5 the 2SLS estimates obtained from the matched sample weighted to ac-

commodate potential heteroskedasticity associated with different GMO adoption intensities

across countries (see Annex A).

Although magnitudes differ, the qualitative regression results reported in Columns 3 to

5 are similar. Variation in capital intensity (k) is statistically significant in explaining LP

variation across the original sample and the matched sample. Only the OLS estimate of α

for the matched sample is positive. But it remains quite small, about .04 log points, and

is imprecisely estimated. Both 2SLS estimates for α are negative, larger in absolute value

terms, about -.24 to -.21, and more precisely estimated than the OLS estimate. Nevertheless,

they remain insignificant at all traditional levels of confidence. The estimated β is uniformly

negative for all three models and precisely estimated. The estimates from the 2SLS versions

are roughly 3.5 times larger (in absolute value terms) than the OLS estimates.

In Annex B, we report parameter estimates for vt − v̄, each period’s deviation from

the time specific AP for the non-GMO technology. Setting v1974 = 1 gives an estimate of

approximately 1.06 for v̄ using either version of the 2SLS estimates. The vt − v̄ estimates

are largely negative until circa 1985-1986 and positive (with some exceptions) thereafter.

All estimates for the 2SLS versions are imprecise. The implication is that time-specific

productivity differences grew steadily but slowly throughout the sample period. Figure

4 illustrates this pattern of AP growth using the 2SLS estimates from the matched but

unweighted sample. (Before 1994 that growth pattern included all 15 OECD countries.)

The solid curve is the non-GMO pattern, and the dotted segment that emanates from it

illustrates inter-temporal AP growth pattern that would have occurred if GMO techniques

had been adopted in 1994 (the United States was the earliest adopter). It suggests that GMO

adopters would have experienced lower time-specific AP than adopters. (Recall, however,

that the 2SLS α is not significantly different from zero.)
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Figure 4: Pattern of AP growth using the 2SLS estimate: Counterfactual analysis

Robustness Checks

This section reports the results of several sensitivity analyses. Our first analysis is directed

towards assessing the finding that GMO adoption is not accompanied by positive measurable

gains in AP. To that end, we have used the same procedures described in the Data section

to create a single aggregate input, call it X, from our K and L variates. Then, we calculated

measured AP as value added per unit of X, Y/X. Measured AP was then used as the

dependent variable in regression analyses that replicated those summarized in Table 2 after

excluding lnk as an independent variable. The results for α are summarized in Table 3.

The results are generally supportive of those reported in Table 2. The α estimate from OLS

applied to the matched sample is positive and statistically different from zero at the .05

level. But the OLS analysis applied to the full sample for 15 countries produces a positive

but imprecise estimate, while both 2SLS estimates for the matched sample are negative. For

each of the estimated versions, the time-specific variates, vt − v̄ explained the bulk of the

variation in AP.

To examine the inter-temporal behavior of the differences between the GMO and non-

GMO technologies, we followed procedures developed by Autor (2003) and later used by
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Table 3: Estimated impact of GMO adoption on AP (measured as value-added,

Y, per unit of X): OLS and 2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: lnAP

Constant -1.402*** -1.293*** - -

(0.080) (0.114) - -

α 0.142 0.175** -0.045 -0.021

(0.093) (0.079) (0.089) (0.088)

Number of Observations 585 453 453 453

R-squared 0.733 0.72 0.686 0.698

Number of countries 15 15 15 15

Notes: In the first stage of 2SLS regression, we use the number of patents for GMO applied for in the

previous 10 years as the instrument. Robust standard errors are in parentheses, and “ ∗ ∗ ∗ ”p < 0.01,

“ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.

Beck et al. (2010). We fitted regressions of the form

ln yit = c0 + ui + vt + b0lnkit + α1G
−21
it + α2G

−20
it + ...+ α38G

+17
it

+ β1

(
G−21

it ln kit
)
+ β2

(
G−20

it ln kit
)
+ ...+ β38

(
G+17

it ln kit
)
+ ϵit.

Here G−j
it equals one for country i in the jth year before it adopted the GMO technology and

zero otherwise, and G+j
it equals one for the jth year after GMO adoption and zero otherwise.

The results are summarized in panels (a) and (b) of Figure 5. For all years except 2010 and

2011, the estimated coefficients, αt, are not significantly different from zero at the .05 level.

After 1994, they follow a pattern of being positive, then negative, and then returning to

positive after 2007. The estimated coefficients, βt, are consistently negative after 1994 and

are statistically different from zero, with a few exceptions, after 2000.

Finally, we also examined the impact of GMO adoption by making the counterfactual

assumption that any country that eventually adopted GMO techniques did so in 1994. To

examine this counterfactual assumption, we estimated the reformulated version of expression

(2):

ln yit = c0 + ui + vt + b0lnkit + αĜit + βĜit ln kit + ϵit.
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Figure 5: Marginal impact of GMO adoption on agricultural LP

(a) Estimated impact on AP (α) (95% confidence interval)

(b) Estimated impact on β (95% confidence interval)

Here Ĝit = 1 for all GMO adoption countries after 1994 and zero otherwise. The results are

summarized in Table 4. (More detailed results are reported in Annex B.) The estimated α’s

are both positive and negative, but again not statistically different from zero at traditional
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confidence levels. The estimated β’s are all negative and significantly different from zero at

the .10 level.

Table 4: Estimated impact of GMO adoption on agricultural LP: Alternative

GMO adoption strategy (1994)

All Sample PS Match PS Match PS Match+W

OLS OLS OLS OLS

(1) (2) (3) (4)

Dependent variable: lny

Constant -1.380*** 0.282 0.382*** 0.377***

(0.076) (0.178) (0.093) (0.092)

b
′

0 - 0.782*** 0.830*** 0.825***

- (0.091) (0.063) (0.064)

α
′

0 0.148 -0.037 0.103 0.11

(0.121) (0.132) (0.099) (0.100)

β
′

0 - -0.161* -0.112* -0.110*

- (0.088) (0.062) (0.063)

Number of Observations 585 585 453 453

R-squared 0.778 0.9 0.889 0.89

Number of countries 15 15 15 15

Notes: Robust standard errors are reported in parentheses, and “∗∗∗”p < 0.01, “∗∗”p < 0.05, “∗”p < 0.1.

In the first stage of 2SLS regression, we use the number of patents for GMO applied for in the previous

10 years as the instrument.

Discussion

The empirical results suggest that GMO adopters experienced no AP gains after adoption

and that GMO adoption enhanced the relative effectiveness of aggregate labor at the expense

of aggregate capital. The absence of a positive GMO impact on AP and the hint that intro-

ducing GMOs lowered AP may seem surprising, especially given the micro-level evidence.

Nevertheless, it is not unprecedented and echoes Solow’s famous epigram that “You can see

the computer age everywhere but in the productivity statistics.”

The results reported here raise similar issues. What constitutes a technological revolution

lies in the eye of the beholder. But our analysis reveals little to no evidence that adopt-
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ing GMO techniques revolutionized agricultural productivity. What support there is that

adopting GMO techniques enhances AP only occurs a decade and a half post adoption (see

Figure 5a). Other studies using different data and different techniques have raised similar

concerns, albeit in other contexts, for the United States, the international leader in adopting

GMO techniques. Andersen, Alston, Pardey, and Smith (2018) concluded on the basis of

an extensive time-series analysis of US agricultural total factor productivity performance

that US agricultural productivity grew at an average annual rate of 1.16% over the period

1990-2007 as against an average annual rate of 1.42% over the 1910-1990 period. The last 14

years of that period overlap the post-GMO-adoption period for the United States, and the

Andersen et al. (2018) estimated .26 decline is close to our 2SLS estimates of a .21 to .25

decline, despite the differences in data and techniques.4 Similarly, in a study focused on the

effects of climate change Ortiz-Bobea, Knippenberg, and Chambers (2018) using a state-level

panel covering the period of 1960-2004, documented a slowing and increased dispersion of

US agricultural productivity growth in the last decade of the 20th century. Neither the An-

dersen et al. (2018) study nor the Ortiz-Bobea et al. (2018) study used data that permitted

comparisons between adopters and non-adopters of GMO techniques, but the overarching

message of slowed agricultural productivity growth for the main adopter of GMO technology

remains the same.

The story that emerges is that the most perceptible difference between GMO adopters

and non-adopters is in how capital deepening affects LP. Capital deepening is less effective in

promoting LP for GMO adopters than for non-adopters. For relatively labor rich countries,

the implied increased marginal return to labor can enhance LP even if AP remains constant

or declines. Six of the seven adopting countries adopted GMO techniques prior to 2001

(United States, Canada, Australia, France, Spain, and Germany). The seventh, Sweden,

did so in 2010. Using our 2SLS results for the matched but unweighted sample, our point

estimates of the average annual LP change associated with adopting GMO techniques for the

2000-2011 period are (expressed in log points): United States (.42), Canada (.70), Australia

4The ‘productivity’ measure used in Andersen et al. (2018) is multifactor productivity, which measures

aggregate agricultural output per unit of an aggregate of all inputs, and not value added per unit of aggregated

capital and labor.
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(-.05), France (.26), Spain (.48), and Germany (.28).5 Sweden adopted GMO techniques in

2010 and our point estimate of that adoption’s impact on LP for 2011 is -.16. So, according

to these estimates, roughly 28% of the GMO adopters experienced declines in both AP and

LP.

Caselli (2005) suggests that raising developing countries agricultural LP to US levels

might cause world income inequality to virtually disappear. The empirical result that coun-

tries with labor-rich agricultural sectors may enhance LP by adopting GMO techniques

provides some support for the argument that widespread adoption of GMO techniques can

help close that gap. While compelling, caveats exist. For example, the countries in our

sample with the highest average LP are, in rank order, the Netherlands, Belgium, France,

and the United States. Two non-adopters and non-adopters. In 1998 the year in which

France adopted GMO techniques, its LP was approximately .78% of the Netherlands. In

2011, France’s LP stood at 66% of the Netherlands. GMO adoption was accompanied by

an increase and not a narrowing of the LP gap between France and the Netherlands. 6 It’s

also important to emphasize that the 15 countries in our panel also have far more productive

agricultural sectors than the typical developing nation. Their agricultural sectors account

for a small share of total GDP and employ a small portion of their labor force (Denmark

with about 5% has the highest). How these empirical results extend to countries with very

different capital structures and agricultural practices is problematic.

5All of these changes are calculated treating k for each time period as predetermined. These numbers

measure difference in LP levels and not growth rates.
6Such numbers, of course, are always subject to “cherry picking”. However, the Netherlands experienced

a sharp drop in LP between 2010 and 2011, while France experienced an increase. If the same comparison

were made for 2010, France’s LP was approximately 56% of the Netherlands.
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Annex A: Econometric Issues

Because our data are not drawn from a randomized trial, the potential for sample-selection

bias exists. To accommodate it, we assume that: the data are consistent with the conditional

independence or unconfoundedness condition that:

G⊥(ln y|X)

where “⊥” denotes the independence relation between two random variables and X denotes

a vector of covariates; and the probability of assignment to the GMO group versus the

non-GMO group is bounded away from 0 and 1 given X, Pr(G = 1|X) ∈ (0, 1). Our

empirical representation of Pr(G = 1|X) ∈ (0, 1) assumes a logit form where X consists

of two covariates: the price of intermediate inputs used in agricultural production and per

capita gross domestic production.

The estimated logit model is summarized in Annex Table A1. We use the estimated

propensity scores to implement the propensity score matching technique to match GMO

approved and non-approved countries described, for example, in Imbens and Rubin (2015,

see in particular Sections 15.3, 15.3.3,18.4-5). Briefly, in each period for each country that

has adopted GMO techniques we match it with the non-adopting country that is closest to

it in terms of the distance between the linearized propensity scores. The matching process

produces a “matched sample” with 453 observations. Parallel trend tests are reported in

Annex Figure A1.

Because labor choice, capital choice, and GMO adoption may be affected by factors such

as macroeconomic variates, macroeconomic shocks, attitudes towards GMOs and biotechnol-

ogy not encompassed in our model, we use 2SLS procedure to accommodate the presence of

missing explanatory factors. The instruments for the first-stage regressions are the relative

price of intermediate inputs, the total number of GMO varieties created in a laboratory by

a country in the preceding ten-year period before GMO technology has been first adopted,

and the total number of GMO patent applications in the preceding ten years. The latter two

variates are predetermined but also reflect a given country’s attitudes towards GMO tech-

niques. All three regressions were estimated in first-difference form using the OLS regression.

The first-stage results are summarized in Annex Table A2.
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The intensity with which GMOs are adopted across countries varies. For example, the

average GMO adoption intensity in the United States and Canada for the period of 1994-

2011 are 45% and 22% respectively, while the adoption intensity for an EU adopter is less

than 1%. Assigning equal weights to countries with different GMO adoption intensities in

the regression analysis may bias the estimated impact of GMO adoption. To accommodate

this problem, we use the exponential of GMO adoption intensity for each country to adjust

the difference in GMO adoption intensity across countries.

Table A1: First-stage logit model for the propensity score (PS) matching

Sub-sample (pre-1994) All sample period

(1) (2)

Dependent variable: Gi

GDP per capita (ln) 1.327** 0.464

(0.567) (0.439)

Relative price of intermediate inputs (US 1995=1) -2.950*** -3.229***

(0.573) (0.442)

Constant -11.597** -2.953

(5.704) (4.412)

Year Dummies Yes Yes

LR Chi2(22) 47.45 69.57

Rseudo R-squared 0.109 0.086

Number of Observations 315 585

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Figure A1: The parallel trend test for GMO adoption using the propensity score

matched sample

(a) Parallel trend test for Model(2) (b) Parallel trend test for Model(3)

Note: we use 15 periods lags and 6 periods leads in this parallel trend test, and the F-statistics are 1.79

(p-value 24.81%) and 1.93 (p-value 22.16%).

Table A2: The first-stage regression results for the 2SLS models
Model (4) - PS Model (5) – PS+Weight

(1) (2) (3) (4) (5) (6)

Dependent variable: lnkit Git Git ∗ lnkit lnkit Git Git ∗ lnkit
Relative price of intermediate input 0.206*** 0.311*** -0.101 0.187*** 0.326*** -0.145

(0.065) (0.083) (0.131) (0.065) (0.083) (0.136)

number of GMO events (10 years ahead) 0.000 0.003*** -0.006*** 0.000 0.002*** -0.005***

(0.000) (0.001) (0.001) (0.000) (0.000) (0.001)

Number of patents applicants (10 years ahead) 0.000*** 0.000** 0.000 0.000*** 0.000** 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

interaction between GMO cty and lnkl 0.636*** 0.430*** -0.050 0.645*** 0.417*** -0.030

(0.055) (0.071) (0.156) (0.055) (0.071) (0.160)

Year dummies Yes Yes Yes Yes Yes Yes

F-test of excluded instruments 13.88 28.59 18.52 13.07 27.74 18.26

Sanderson-Windmeijer multivariate F test 33.81 63.8 34.54 32.96 49.08 29.88

Kleibergen-Paap rk LM stat. 29.013 32.582

Weak identification test 11.437 13.313

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Annex B: Time-specific AP Change

In this section, we report the full set of estimates for those summarized in Table 2 (Annex

Table B1) and Table 4 (Annex Table B2) in the text. Annex Figure B1 illustrates the time

varying character of AP.
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Table B1: Estimated impact of GMO adoption on agricultural LP: OLS and 2SLS
All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

b0 - 0.787*** 0.798*** 0.755*** 0.679***

- (0.082) (0.082) (0.224) (0.216)

α 0.023 0.010 0.037 -0.239 -0.205

(0.078) (0.092) (0.102) (0.185) (0.174)

β - -0.147*** -0.144** -0.513*** -0.493***

- (0.051) (0.053) (0.167) (0.152)

Interaction between GMO Cty and lnk 0.417** 0.006 -0.009 0.102 0.159

(0.190) (0.114) (0.129) (0.184) (0.194)

D 1974 0.011 -0.040* -0.075* -0.060 -0.052

(0.031) (0.022) (0.042) (0.126) (0.126)

D 1975 0.056 -0.032 -0.127*** -0.163 -0.164

(0.048) (0.039) (0.037) (0.123) (0.125)

D 1976 0.045 -0.068 -0.164*** -0.158 -0.147

(0.065) (0.061) (0.048) (0.125) (0.124)

D 1977 0.112 -0.049 -0.149** -0.179 -0.175

(0.069) (0.059) (0.069) (0.116) (0.117)

D 1978 0.185** -0.017 -0.095 -0.125 -0.117

(0.083) (0.060) (0.074) (0.110) (0.109)

D 1979 0.203** -0.027 -0.082 -0.125 -0.119

(0.080) (0.062) (0.079) (0.105) (0.104)

D 1980 0.217** -0.038 -0.111 -0.139 -0.129

(0.089) (0.070) (0.090) (0.112) (0.112)

D 1981 0.244** -0.008 -0.06 -0.08 -0.072

(0.084) (0.066) (0.095) (0.105) (0.105)

D 1982 0.335*** 0.049 -0.029 -0.052 -0.038

(0.094) (0.073) (0.104) (0.112) (0.109)

D 1983 0.286** -0.020 -0.087 -0.127 -0.113

(0.113) (0.079) (0.109) (0.118) (0.115)

D 1984 0.417*** 0.086 0.024 -0.013 -0.002

(0.104) (0.082) (0.118) (0.108) (0.106)

D 1985 0.384*** 0.068 0.015 -0.005 0.008

(0.112) (0.081) (0.122) (0.106) (0.104)

D 1986 0.451*** 0.103 0.073 0.037 0.054

(0.105) (0.078) (0.115) (0.118) (0.114)

D 1987 0.487*** 0.108 0.067 0.035 0.055

(0.097) (0.073) (0.114) (0.123) (0.118)

D 1988 0.542*** 0.134* 0.089 0.040 0.057

(0.108) (0.069) (0.100) (0.121) (0.116)

D 1989 0.587*** 0.193*** 0.162 0.114 0.125

(0.105) (0.071) (0.100) (0.114) (0.111)

D 1990 0.611*** 0.222*** 0.209** 0.181 0.194*

(0.106) (0.069) (0.089) (0.111) (0.108)

D 1991 0.611*** 0.201*** 0.196** 0.155 0.171

(0.092) (0.063) (0.085) (0.118) (0.114)

D 1992 0.675*** 0.236*** 0.238** 0.202 0.222*

(0.087) (0.072) (0.104) (0.128) (0.122)

D 1993 0.692*** 0.231*** 0.212* 0.162 0.179

(0.113) (0.076) (0.106) (0.125) (0.120)
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Table B1 continued: Estimated impact of GMO adoption on agricultural LP in full

table: OLS and 2SLS
All Sample All Sample PS Match PS Match PS Match+W

OLS OLS OLS 2SLS 2SLS

(1) (2) (3) (4) (5)

Dependent variable: lny

D 1994 0.720*** 0.230*** 0.165 0.071 0.089

(0.121) (0.073) (0.103) (0.139) (0.132)

D 1995 0.717*** 0.198** 0.131 -0.009 0.009

(0.139) (0.080) (0.111) (0.163) (0.155)

D 1996 0.743*** 0.236*** 0.168 0.031 0.048

(0.118) (0.078) (0.112) (0.150) (0.143)

D 1997 0.755*** 0.240*** 0.172 0.043 0.058

(0.108) (0.078) (0.116) (0.145) (0.139)

D 1998 0.767*** 0.231*** 0.161 0.004 0.018

(0.097) (0.072) (0.106) (0.150) (0.142)

D 1999 0.782*** 0.238*** 0.167 0.014 0.028

(0.102) (0.073) (0.107) (0.151) (0.144)

D 2000 0.800*** 0.217** 0.144 -0.041 -0.026

(0.138) (0.090) (0.127) (0.157) (0.152)

D 2001 0.818*** 0.220*** 0.148 -0.015 0.003

(0.125) (0.081) (0.116) (0.160) (0.151)

D 2002 0.811*** 0.212** 0.139 -0.017 -0.001

(0.126) (0.090) (0.121) (0.158) (0.149)

D 2003 0.803*** 0.204** 0.132 -0.030 -0.011

(0.122) (0.092) (0.123) (0.159) (0.151)

D 2004 0.873*** 0.251*** 0.178 0.027 0.051

(0.126) (0.096) (0.129) (0.163) (0.154)

D 2005 0.905*** 0.244** 0.171 0.037 0.064

(0.134) (0.099) (0.124) (0.168) (0.159)

D 2006 0.886*** 0.213** 0.140 0.016 0.045

(0.130) (0.094) (0.122) (0.167) (0.157)

D 2007 0.912*** 0.203** 0.13 0.008 0.041

(0.147) (0.091) (0.124) (0.175) (0.164)

D 2008 0.873*** 0.166 0.092 -0.04 -0.011

(0.144) (0.106) (0.133) (0.177) (0.166)

D 2009 0.956*** 0.207** 0.133 0.019 0.052

(0.154) (0.103) (0.130) (0.183) (0.170)

D 2010 0.903*** 0.161* 0.086 -0.014 0.024

(0.147) (0.094) (0.124) (0.174) (0.164)

D 2011 0.943*** 0.183* 0.107 0.006 0.041

(0.167) (0.107) (0.133) (0.180) (0.169)

Constant -0.987*** 0.283 0.359 - -

(0.184) (0.187) (0.211) - -

Number of Observations 585 585 453 453 453

R-squared 0.815 0.904 0.893 0.845 0.848

Number of countries 15 15 15 15 15

Notes: Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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Figure B1: Time specific AP effects of non-GMO adopting countries
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Table B2: Estimated impact of GMO adoption on AP (measured by using value-

added, Y, divided by X) in full table: OLS and 2SLS
All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: : lnAP

Constant -1.402*** -1.293*** - -

(0.080) (0.114) - -

α 0.142 0.175** -0.045 -0.021

(0.093) (0.079) (0.089) (0.088)

D 1974 0.025 -0.029 -0.043 -0.043

(0.034) (0.056) (0.154) (0.148)

D 1975 0.059 -0.054 -0.031 -0.032

(0.052) (0.084) (0.140) (0.136)

D 1976 0.040 -0.067 -0.081 -0.078

(0.073) (0.079) (0.136) (0.131)

D 1977 0.094 -0.021 -0.009 -0.008

(0.073) (0.092) (0.124) (0.120)

D 1978 0.149* 0.045 0.055 0.053

(0.085) (0.105) (0.121) (0.117)

D 1979 0.182** 0.112 0.131 0.128

(0.081) (0.104) (0.118) (0.114)

D 1980 0.207** 0.104 0.104 0.100

(0.086) (0.119) (0.127) (0.124)

D 1981 0.237*** 0.141 0.141 0.143

(0.075) (0.099) (0.126) (0.123)

D 1982 0.321*** 0.236** 0.236* 0.235**

(0.081) (0.100) (0.123) (0.120)

D 1983 0.251** 0.189 0.208 0.200

(0.097) (0.125) (0.144) (0.141)

D 1984 0.382*** 0.267** 0.276** 0.276**

(0.088) (0.117) (0.122) (0.119)

D 1985 0.376*** 0.299** 0.297** 0.298**

(0.089) (0.119) (0.125) (0.123)

D 1986 0.429*** 0.395*** 0.405*** 0.403***

(0.093) (0.132) (0.125) (0.121)

D 1987 0.461*** 0.413*** 0.414*** 0.415***

(0.087) (0.126) (0.113) (0.110)

D 1988 0.505*** 0.431*** 0.449*** 0.445***

(0.092) (0.127) (0.116) (0.113)

D 1989 0.558*** 0.471*** 0.489*** 0.487***

(0.090) (0.125) (0.113) (0.110)

D 1990 0.591*** 0.526*** 0.526*** 0.525***

(0.081) (0.104) (0.119) (0.116)

D 1991 0.572*** 0.538*** 0.547*** 0.545***

(0.072) (0.098) (0.114) (0.112)
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Table B2 continued: Estimated impact of GMO adoption on AP (measured by

using value-added, Y, divided by X) in full table: OLS and 2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: lnAP

D 1992 0.621*** 0.600*** 0.598*** 0.600***

(0.071) (0.104) (0.114) (0.111)

D 1993 0.629*** 0.571*** 0.589*** 0.587***

(0.083) (0.114) (0.114) (0.111)

D 1994 0.635*** 0.537*** 0.601*** 0.596***

(0.091) (0.118) (0.118) (0.115)

D 1995 0.621*** 0.518*** 0.612*** 0.601***

(0.098) (0.115) (0.123) (0.121)

D 1996 0.658*** 0.555*** 0.649*** 0.640***

(0.091) (0.117) (0.120) (0.118)

D 1997 0.665*** 0.563*** 0.657*** 0.649***

(0.089) (0.119) (0.121) (0.119)

D 1998 0.660*** 0.554*** 0.677*** 0.667***

(0.079) (0.115) (0.128) (0.126)

D 1999 0.676*** 0.569*** 0.692*** 0.683***

(0.083) (0.118) (0.131) (0.129)

D 2000 0.677*** 0.568*** 0.706*** 0.692***

(0.100) (0.118) (0.132) (0.131)

D 2001 0.683*** 0.574*** 0.712*** 0.700***

(0.096) (0.117) (0.129) (0.127)

D 2002 0.679*** 0.569*** 0.708*** 0.695***

(0.100) (0.127) (0.132) (0.130)

D 2003 0.669*** 0.560*** 0.698*** 0.687***

(0.100) (0.130) (0.135) (0.133)

D 2004 0.732*** 0.622*** 0.761*** 0.750***

(0.100) (0.129) (0.131) (0.129)

D 2005 0.745*** 0.636*** 0.774*** 0.764***

(0.108) (0.135) (0.137) (0.135)

D 2006 0.723*** 0.614*** 0.752*** 0.742***

(0.106) (0.133) (0.134) (0.133)

D 2007 0.734*** 0.625*** 0.763*** 0.753***

(0.117) (0.139) (0.136) (0.135)

D 2008 0.689*** 0.580*** 0.718*** 0.707***

(0.114) (0.139) (0.133) (0.132)

D 2009 0.745*** 0.636*** 0.774*** 0.763***

(0.120) (0.140) (0.138) (0.137)
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Table B2 continued: Estimated impact of GMO adoption on AP (measured by

using value-added, Y, divided by X) in full table: OLS and 2SLS

All Sample PS Match PS Match PS Match+W

OLS OLS 2SLS 2SLS

(1) (2) (3) (4)

Dependent variable: lnAP

D 2010 0.690*** 0.578*** 0.731*** 0.720***

(0.121) (0.140) (0.140) (0.139)

D 2011 0.730*** 0.619*** 0.772*** 0.759***

(0.123) (0.131) (0.137) (0.135)

Number of Observations 585 453 453 453

R-squared 0.733 0.72 0.686 0.698

Number of countries 15 15 15 15

Notes: In all models, we controlled the interaction term between Gi and lnkit, as well as ui and vt.

Robust standard errors in parentheses, and “ ∗ ∗ ∗ ”p < 0.01, “ ∗ ∗”p < 0.05, “ ∗ ”p < 0.1.
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